Metamath Proof Explorer


Theorem symdifass

Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by BJ, 7-Sep-2022)

Ref Expression
Assertion symdifass A B C = A B C

Proof

Step Hyp Ref Expression
1 elsymdifxor x A B C x A B x C
2 elsymdifxor x A B x A x B
3 biid x C x C
4 2 3 xorbi12i x A B x C x A x B x C
5 xorass x A x B x C x A x B x C
6 biid x A x A
7 elsymdifxor x B C x B x C
8 7 bicomi x B x C x B C
9 6 8 xorbi12i x A x B x C x A x B C
10 4 5 9 3bitri x A B x C x A x B C
11 elsymdifxor x A B C x A x B C
12 11 bicomi x A x B C x A B C
13 1 10 12 3bitri x A B C x A B C
14 13 eqriv A B C = A B C