Metamath Proof Explorer


Theorem symdifcom

Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifcom A B = B A

Proof

Step Hyp Ref Expression
1 uncom A B B A = B A A B
2 df-symdif A B = A B B A
3 df-symdif B A = B A A B
4 1 2 3 3eqtr4i A B = B A