Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The symmetric difference of two classes
symdifcom
Next ⟩
symdifeq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
symdifcom
Description:
Symmetric difference commutes.
(Contributed by
Scott Fenton
, 24-Apr-2012)
Ref
Expression
Assertion
symdifcom
⊢
A
∆
B
=
B
∆
A
Proof
Step
Hyp
Ref
Expression
1
uncom
⊢
A
∖
B
∪
B
∖
A
=
B
∖
A
∪
A
∖
B
2
df-symdif
⊢
A
∆
B
=
A
∖
B
∪
B
∖
A
3
df-symdif
⊢
B
∆
A
=
B
∖
A
∪
A
∖
B
4
1
2
3
3eqtr4i
⊢
A
∆
B
=
B
∆
A