Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The symmetric difference of two classes
symdifeq1
Next ⟩
symdifeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
symdifeq1
Description:
Equality theorem for symmetric difference.
(Contributed by
Scott Fenton
, 24-Apr-2012)
Ref
Expression
Assertion
symdifeq1
⊢
A
=
B
→
A
∆
C
=
B
∆
C
Proof
Step
Hyp
Ref
Expression
1
difeq1
⊢
A
=
B
→
A
∖
C
=
B
∖
C
2
difeq2
⊢
A
=
B
→
C
∖
A
=
C
∖
B
3
1
2
uneq12d
⊢
A
=
B
→
A
∖
C
∪
C
∖
A
=
B
∖
C
∪
C
∖
B
4
df-symdif
⊢
A
∆
C
=
A
∖
C
∪
C
∖
A
5
df-symdif
⊢
B
∆
C
=
B
∖
C
∪
C
∖
B
6
3
4
5
3eqtr4g
⊢
A
=
B
→
A
∆
C
=
B
∆
C