Metamath Proof Explorer


Theorem symdifeq1

Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifeq1 A = B A C = B C

Proof

Step Hyp Ref Expression
1 difeq1 A = B A C = B C
2 difeq2 A = B C A = C B
3 1 2 uneq12d A = B A C C A = B C C B
4 df-symdif A C = A C C A
5 df-symdif B C = B C C B
6 3 4 5 3eqtr4g A = B A C = B C