Metamath Proof Explorer


Theorem symdifeq2

Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifeq2 A = B C A = C B

Proof

Step Hyp Ref Expression
1 symdifeq1 A = B A C = B C
2 symdifcom C A = A C
3 symdifcom C B = B C
4 1 2 3 3eqtr4g A = B C A = C B