Metamath Proof Explorer
Description: The symmetric difference of a class with itself is the empty class.
(Contributed by Scott Fenton, 25-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
symdifid |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-symdif |
|
2 |
|
difid |
|
3 |
2 2
|
uneq12i |
|
4 |
|
un0 |
|
5 |
1 3 4
|
3eqtri |
|