Metamath Proof Explorer


Theorem symdifid

Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012)

Ref Expression
Assertion symdifid A A =

Proof

Step Hyp Ref Expression
1 df-symdif A A = A A A A
2 difid A A =
3 2 2 uneq12i A A A A =
4 un0 =
5 1 3 4 3eqtri A A =