Metamath Proof Explorer


Theorem symdifv

Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifv A V = V A

Proof

Step Hyp Ref Expression
1 df-symdif A V = A V V A
2 ssv A V
3 ssdif0 A V A V =
4 2 3 mpbi A V =
5 4 uneq1i A V V A = V A
6 uncom V A = V A
7 un0 V A = V A
8 6 7 eqtri V A = V A
9 5 8 eqtri A V V A = V A
10 1 9 eqtri A V = V A