Metamath Proof Explorer


Theorem symg2bas

Description: The symmetric group on a pair is the symmetric group S_2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S_1, see Theorem symg1bas . (Contributed by AV, 9-Dec-2018) (Proof shortened by AV, 16-Jun-2022)

Ref Expression
Hypotheses symg1bas.1 G = SymGrp A
symg1bas.2 B = Base G
symg2bas.0 A = I J
Assertion symg2bas I V J W B = I I J J I J J I

Proof

Step Hyp Ref Expression
1 symg1bas.1 G = SymGrp A
2 symg1bas.2 B = Base G
3 symg2bas.0 A = I J
4 eqid SymGrp J = SymGrp J
5 eqid Base SymGrp J = Base SymGrp J
6 eqid J = J
7 4 5 6 symg1bas J W Base SymGrp J = J J
8 7 ad2antll I = J I V J W Base SymGrp J = J J
9 df-pr I J = I J
10 sneq I = J I = J
11 10 uneq1d I = J I J = J J
12 11 adantr I = J I V J W I J = J J
13 unidm J J = J
14 12 13 eqtrdi I = J I V J W I J = J
15 9 14 eqtrid I = J I V J W I J = J
16 3 15 eqtrid I = J I V J W A = J
17 16 fveq2d I = J I V J W SymGrp A = SymGrp J
18 1 17 eqtrid I = J I V J W G = SymGrp J
19 18 fveq2d I = J I V J W Base G = Base SymGrp J
20 2 19 eqtrid I = J I V J W B = Base SymGrp J
21 id I = J I = J
22 21 21 opeq12d I = J I I = J J
23 22 adantr I = J I V J W I I = J J
24 23 preq1d I = J I V J W I I J J = J J J J
25 eqid J J = J J
26 opex J J V
27 26 26 preqsn J J J J = J J J J = J J J J = J J
28 25 25 27 mpbir2an J J J J = J J
29 24 28 eqtrdi I = J I V J W I I J J = J J
30 opeq1 I = J I J = J J
31 opeq2 I = J J I = J J
32 30 31 preq12d I = J I J J I = J J J J
33 32 28 eqtrdi I = J I J J I = J J
34 33 adantr I = J I V J W I J J I = J J
35 29 34 preq12d I = J I V J W I I J J I J J I = J J J J
36 eqid J J = J J
37 snex J J V
38 37 37 preqsn J J J J = J J J J = J J J J = J J
39 36 36 38 mpbir2an J J J J = J J
40 35 39 eqtrdi I = J I V J W I I J J I J J I = J J
41 8 20 40 3eqtr4d I = J I V J W B = I I J J I J J I
42 2 fvexi B V
43 42 a1i ¬ I = J I V J W B V
44 neqne ¬ I = J I J
45 44 anim2i I V J W ¬ I = J I V J W I J
46 df-3an I V J W I J I V J W I J
47 45 46 sylibr I V J W ¬ I = J I V J W I J
48 47 ancoms ¬ I = J I V J W I V J W I J
49 1 2 3 symg2hash I V J W I J B = 2
50 48 49 syl ¬ I = J I V J W B = 2
51 id I V I V
52 51 ancri I V I V I V
53 id J W J W
54 53 ancri J W J W J W
55 52 54 anim12i I V J W I V I V J W J W
56 df-ne I J ¬ I = J
57 id I J I J
58 57 ancri I J I J I J
59 56 58 sylbir ¬ I = J I J I J
60 f1oprg I V I V J W J W I J I J I I J J : I J 1-1 onto I J
61 60 imp I V I V J W J W I J I J I I J J : I J 1-1 onto I J
62 55 59 61 syl2anr ¬ I = J I V J W I I J J : I J 1-1 onto I J
63 eqidd A = I J I I J J = I I J J
64 id A = I J A = I J
65 63 64 64 f1oeq123d A = I J I I J J : A 1-1 onto A I I J J : I J 1-1 onto I J
66 3 65 ax-mp I I J J : A 1-1 onto A I I J J : I J 1-1 onto I J
67 62 66 sylibr ¬ I = J I V J W I I J J : A 1-1 onto A
68 prex I I J J V
69 1 2 elsymgbas2 I I J J V I I J J B I I J J : A 1-1 onto A
70 68 69 ax-mp I I J J B I I J J : A 1-1 onto A
71 67 70 sylibr ¬ I = J I V J W I I J J B
72 f1oprswap I V J W I J J I : I J 1-1 onto I J
73 eqidd A = I J I J J I = I J J I
74 73 64 64 f1oeq123d A = I J I J J I : A 1-1 onto A I J J I : I J 1-1 onto I J
75 3 74 ax-mp I J J I : A 1-1 onto A I J J I : I J 1-1 onto I J
76 72 75 sylibr I V J W I J J I : A 1-1 onto A
77 76 adantl ¬ I = J I V J W I J J I : A 1-1 onto A
78 prex I J J I V
79 1 2 elsymgbas2 I J J I V I J J I B I J J I : A 1-1 onto A
80 78 79 ax-mp I J J I B I J J I : A 1-1 onto A
81 77 80 sylibr ¬ I = J I V J W I J J I B
82 opex I I V
83 82 26 pm3.2i I I V J J V
84 opex I J V
85 opex J I V
86 84 85 pm3.2i I J V J I V
87 83 86 pm3.2i I I V J J V I J V J I V
88 opthg2 I V J W I I = I J I = I I = J
89 eqtr I = I I = J I = J
90 88 89 syl6bi I V J W I I = I J I = J
91 90 necon3d I V J W I J I I I J
92 91 com12 I J I V J W I I I J
93 56 92 sylbir ¬ I = J I V J W I I I J
94 93 imp ¬ I = J I V J W I I I J
95 52 adantr I V J W I V I V
96 opthg I V I V I I = J I I = J I = I
97 95 96 syl I V J W I I = J I I = J I = I
98 simpl I = J I = I I = J
99 97 98 syl6bi I V J W I I = J I I = J
100 99 necon3d I V J W I J I I J I
101 100 com12 I J I V J W I I J I
102 56 101 sylbir ¬ I = J I V J W I I J I
103 102 imp ¬ I = J I V J W I I J I
104 94 103 jca ¬ I = J I V J W I I I J I I J I
105 104 orcd ¬ I = J I V J W I I I J I I J I J J I J J J J I
106 prneimg I I V J J V I J V J I V I I I J I I J I J J I J J J J I I I J J I J J I
107 87 105 106 mpsyl ¬ I = J I V J W I I J J I J J I
108 hash2prd B V B = 2 I I J J B I J J I B I I J J I J J I B = I I J J I J J I
109 108 imp B V B = 2 I I J J B I J J I B I I J J I J J I B = I I J J I J J I
110 43 50 71 81 107 109 syl23anc ¬ I = J I V J W B = I I J J I J J I
111 41 110 pm2.61ian I V J W B = I I J J I J J I