Metamath Proof Explorer


Theorem symg2hash

Description: The symmetric group on a (proper) pair has cardinality 2 . (Contributed by AV, 9-Dec-2018)

Ref Expression
Hypotheses symg1bas.1 G = SymGrp A
symg1bas.2 B = Base G
symg2bas.0 A = I J
Assertion symg2hash I V J W I J B = 2

Proof

Step Hyp Ref Expression
1 symg1bas.1 G = SymGrp A
2 symg1bas.2 B = Base G
3 symg2bas.0 A = I J
4 prfi I J Fin
5 3 4 eqeltri A Fin
6 1 2 symghash A Fin B = A !
7 5 6 ax-mp B = A !
8 3 fveq2i A = I J
9 elex I V I V
10 elex J W J V
11 id I J I J
12 9 10 11 3anim123i I V J W I J I V J V I J
13 hashprb I V J V I J I J = 2
14 12 13 sylib I V J W I J I J = 2
15 8 14 eqtrid I V J W I J A = 2
16 15 fveq2d I V J W I J A ! = 2 !
17 fac2 2 ! = 2
18 16 17 eqtrdi I V J W I J A ! = 2
19 7 18 eqtrid I V J W I J B = 2