Metamath Proof Explorer


Theorem symgbas

Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015) (Proof shortened by AV, 29-Mar-2024)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgbas B = x | x : A 1-1 onto A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 eqid x | x : A 1-1 onto A = x | x : A 1-1 onto A
4 1 3 symgval G = EndoFMnd A 𝑠 x | x : A 1-1 onto A
5 4 eqcomi EndoFMnd A 𝑠 x | x : A 1-1 onto A = G
6 5 fveq2i Base EndoFMnd A 𝑠 x | x : A 1-1 onto A = Base G
7 f1of x : A 1-1 onto A x : A A
8 7 ss2abi x | x : A 1-1 onto A x | x : A A
9 eqid EndoFMnd A = EndoFMnd A
10 eqid Base EndoFMnd A = Base EndoFMnd A
11 9 10 efmndbasabf Base EndoFMnd A = x | x : A A
12 8 11 sseqtrri x | x : A 1-1 onto A Base EndoFMnd A
13 eqid EndoFMnd A 𝑠 x | x : A 1-1 onto A = EndoFMnd A 𝑠 x | x : A 1-1 onto A
14 13 10 ressbas2 x | x : A 1-1 onto A Base EndoFMnd A x | x : A 1-1 onto A = Base EndoFMnd A 𝑠 x | x : A 1-1 onto A
15 12 14 ax-mp x | x : A 1-1 onto A = Base EndoFMnd A 𝑠 x | x : A 1-1 onto A
16 6 15 2 3eqtr4ri B = x | x : A 1-1 onto A