Metamath Proof Explorer


Theorem symgbas

Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015) (Proof shortened by AV, 29-Mar-2024)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgbas B = x | x : A 1-1 onto A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 eqid x | x : A 1-1 onto A = x | x : A 1-1 onto A
4 1 3 symgval Could not format G = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) with typecode |-
5 4 eqcomi Could not format ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = G : No typesetting found for |- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = G with typecode |-
6 5 fveq2i Could not format ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) = ( Base ` G ) : No typesetting found for |- ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) = ( Base ` G ) with typecode |-
7 f1of x : A 1-1 onto A x : A A
8 7 ss2abi x | x : A 1-1 onto A x | x : A A
9 eqid Could not format ( EndoFMnd ` A ) = ( EndoFMnd ` A ) : No typesetting found for |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) with typecode |-
10 eqid Could not format ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) : No typesetting found for |- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) with typecode |-
11 9 10 efmndbasabf Could not format ( Base ` ( EndoFMnd ` A ) ) = { x | x : A --> A } : No typesetting found for |- ( Base ` ( EndoFMnd ` A ) ) = { x | x : A --> A } with typecode |-
12 8 11 sseqtrri Could not format { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) : No typesetting found for |- { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) with typecode |-
13 eqid Could not format ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) : No typesetting found for |- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) with typecode |-
14 13 10 ressbas2 Could not format ( { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) -> { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) ) : No typesetting found for |- ( { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) -> { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) ) with typecode |-
15 12 14 ax-mp Could not format { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) : No typesetting found for |- { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) with typecode |-
16 6 15 2 3eqtr4ri B = x | x : A 1-1 onto A