Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Definition and basic properties
symgbasexOLD
Metamath Proof Explorer
Description: Obsolete as of 8-Aug-2024. B e. _V follows immediatly from fvex .
(Contributed by AV , 30-Mar-2024) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
symgbas.1
⊢ G = SymGrp ⁡ A
symgbas.2
⊢ B = Base G
Assertion
symgbasexOLD
⊢ A ∈ V → B ∈ V
Proof
Step
Hyp
Ref
Expression
1
symgbas.1
⊢ G = SymGrp ⁡ A
2
symgbas.2
⊢ B = Base G
3
1 2
symgbas
⊢ B = f | f : A ⟶ 1-1 onto A
4
permsetexOLD
⊢ A ∈ V → f | f : A ⟶ 1-1 onto A ∈ V
5
3 4
eqeltrid
⊢ A ∈ V → B ∈ V