Metamath Proof Explorer


Theorem symgbasf

Description: A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgbasf F B F : A A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 1 2 symgbasf1o F B F : A 1-1 onto A
4 f1of F : A 1-1 onto A F : A A
5 3 4 syl F B F : A A