Metamath Proof Explorer


Theorem symgbasf1o

Description: Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgbasf1o F B F : A 1-1 onto A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 1 2 elsymgbas2 F B F B F : A 1-1 onto A
4 3 ibi F B F : A 1-1 onto A