Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Definition and basic properties
symgbasfi
Next ⟩
symgfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
symgbasfi
Description:
The symmetric group on a finite index set is finite.
(Contributed by
SO
, 9-Jul-2018)
Ref
Expression
Hypotheses
symgbas.1
⊢
G
=
SymGrp
⁡
A
symgbas.2
⊢
B
=
Base
G
Assertion
symgbasfi
⊢
A
∈
Fin
→
B
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
symgbas.1
⊢
G
=
SymGrp
⁡
A
2
symgbas.2
⊢
B
=
Base
G
3
mapfi
⊢
A
∈
Fin
∧
A
∈
Fin
→
A
A
∈
Fin
4
3
anidms
⊢
A
∈
Fin
→
A
A
∈
Fin
5
1
2
symgbas
⊢
B
=
f
|
f
:
A
⟶
1-1 onto
A
6
f1of
⊢
f
:
A
⟶
1-1 onto
A
→
f
:
A
⟶
A
7
6
ss2abi
⊢
f
|
f
:
A
⟶
1-1 onto
A
⊆
f
|
f
:
A
⟶
A
8
5
7
eqsstri
⊢
B
⊆
f
|
f
:
A
⟶
A
9
mapvalg
⊢
A
∈
Fin
∧
A
∈
Fin
→
A
A
=
f
|
f
:
A
⟶
A
10
9
anidms
⊢
A
∈
Fin
→
A
A
=
f
|
f
:
A
⟶
A
11
8
10
sseqtrrid
⊢
A
∈
Fin
→
B
⊆
A
A
12
4
11
ssfid
⊢
A
∈
Fin
→
B
∈
Fin