Metamath Proof Explorer


Theorem symgbasfi

Description: The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgbasfi A Fin B Fin

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 mapfi A Fin A Fin A A Fin
4 3 anidms A Fin A A Fin
5 1 2 symgbas B = f | f : A 1-1 onto A
6 f1of f : A 1-1 onto A f : A A
7 6 ss2abi f | f : A 1-1 onto A f | f : A A
8 5 7 eqsstri B f | f : A A
9 mapvalg A Fin A Fin A A = f | f : A A
10 9 anidms A Fin A A = f | f : A A
11 8 10 sseqtrrid A Fin B A A
12 4 11 ssfid A Fin B Fin