Metamath Proof Explorer


Theorem symgcl

Description: The group operation of the symmetric group on A is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgov.1 G = SymGrp A
symgov.2 B = Base G
symgov.3 + ˙ = + G
Assertion symgcl X B Y B X + ˙ Y B

Proof

Step Hyp Ref Expression
1 symgov.1 G = SymGrp A
2 symgov.2 B = Base G
3 symgov.3 + ˙ = + G
4 1 2 3 symgov X B Y B X + ˙ Y = X Y
5 1 2 symgbasf1o X B X : A 1-1 onto A
6 1 2 symgbasf1o Y B Y : A 1-1 onto A
7 f1oco X : A 1-1 onto A Y : A 1-1 onto A X Y : A 1-1 onto A
8 5 6 7 syl2an X B Y B X Y : A 1-1 onto A
9 coexg X B Y B X Y V
10 1 2 elsymgbas2 X Y V X Y B X Y : A 1-1 onto A
11 9 10 syl X B Y B X Y B X Y : A 1-1 onto A
12 8 11 mpbird X B Y B X Y B
13 4 12 eqeltrd X B Y B X + ˙ Y B