| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgext.s |
|
| 2 |
|
symgext.e |
|
| 3 |
1 2
|
symgextf |
|
| 4 |
|
difsnid |
|
| 5 |
4
|
eqcomd |
|
| 6 |
5
|
eleq2d |
|
| 7 |
5
|
eleq2d |
|
| 8 |
6 7
|
anbi12d |
|
| 9 |
8
|
adantr |
|
| 10 |
|
elun |
|
| 11 |
|
elun |
|
| 12 |
1 2
|
symgextfv |
|
| 13 |
12
|
com12 |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
imp |
|
| 16 |
1 2
|
symgextfv |
|
| 17 |
16
|
com12 |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
imp |
|
| 20 |
15 19
|
eqeq12d |
|
| 21 |
|
eqid |
|
| 22 |
21 1
|
symgbasf1o |
|
| 23 |
|
f1of1 |
|
| 24 |
|
dff13 |
|
| 25 |
|
fveqeq2 |
|
| 26 |
|
equequ1 |
|
| 27 |
25 26
|
imbi12d |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
|
equequ2 |
|
| 31 |
29 30
|
imbi12d |
|
| 32 |
27 31
|
rspc2va |
|
| 33 |
32
|
expcom |
|
| 34 |
33
|
a1d |
|
| 35 |
24 34
|
simplbiim |
|
| 36 |
22 23 35
|
3syl |
|
| 37 |
36
|
impcom |
|
| 38 |
37
|
impcom |
|
| 39 |
20 38
|
sylbid |
|
| 40 |
39
|
ex |
|
| 41 |
1 2
|
symgextf1lem |
|
| 42 |
|
eqneqall |
|
| 43 |
42
|
eqcoms |
|
| 44 |
43
|
com12 |
|
| 45 |
41 44
|
syl6com |
|
| 46 |
45
|
ancoms |
|
| 47 |
1 2
|
symgextf1lem |
|
| 48 |
|
eqneqall |
|
| 49 |
48
|
com12 |
|
| 50 |
47 49
|
syl6com |
|
| 51 |
|
elsni |
|
| 52 |
|
elsni |
|
| 53 |
|
eqtr3 |
|
| 54 |
53
|
2a1d |
|
| 55 |
51 52 54
|
syl2an |
|
| 56 |
40 46 50 55
|
ccase |
|
| 57 |
10 11 56
|
syl2anb |
|
| 58 |
57
|
com12 |
|
| 59 |
9 58
|
sylbid |
|
| 60 |
59
|
ralrimivv |
|
| 61 |
|
dff13 |
|
| 62 |
3 60 61
|
sylanbrc |
|