Metamath Proof Explorer


Theorem symgextfo

Description: The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgext.s S = Base SymGrp N K
symgext.e E = x N if x = K K Z x
Assertion symgextfo K N Z S E : N onto N

Proof

Step Hyp Ref Expression
1 symgext.s S = Base SymGrp N K
2 symgext.e E = x N if x = K K Z x
3 1 2 symgextf K N Z S E : N N
4 eqid SymGrp N K = SymGrp N K
5 4 1 symgbasf1o Z S Z : N K 1-1 onto N K
6 f1ofo Z : N K 1-1 onto N K Z : N K onto N K
7 5 6 syl Z S Z : N K onto N K
8 7 adantl K N Z S Z : N K onto N K
9 dffo3 Z : N K onto N K Z : N K N K k N K i N K k = Z i
10 8 9 sylib K N Z S Z : N K N K k N K i N K k = Z i
11 10 simprd K N Z S k N K i N K k = Z i
12 1 2 symgextfv K N Z S i N K E i = Z i
13 12 imp K N Z S i N K E i = Z i
14 13 eqeq2d K N Z S i N K k = E i k = Z i
15 14 rexbidva K N Z S i N K k = E i i N K k = Z i
16 15 ralbidv K N Z S k N K i N K k = E i k N K i N K k = Z i
17 11 16 mpbird K N Z S k N K i N K k = E i
18 difssd k N K N K N
19 ssrexv N K N i N K k = E i i N k = E i
20 18 19 syl k N K i N K k = E i i N k = E i
21 20 ralimia k N K i N K k = E i k N K i N k = E i
22 17 21 syl K N Z S k N K i N k = E i
23 simpl K N Z S K N
24 1 2 symgextfve K N i = K E i = K
25 24 adantr K N Z S i = K E i = K
26 25 imp K N Z S i = K E i = K
27 26 eqcomd K N Z S i = K K = E i
28 23 27 rspcedeq2vd K N Z S i N K = E i
29 eqeq1 k = K k = E i K = E i
30 29 rexbidv k = K i N k = E i i N K = E i
31 30 ralunsn K N k N K K i N k = E i k N K i N k = E i i N K = E i
32 31 adantr K N Z S k N K K i N k = E i k N K i N k = E i i N K = E i
33 22 28 32 mpbir2and K N Z S k N K K i N k = E i
34 difsnid K N N K K = N
35 34 eqcomd K N N = N K K
36 35 raleqdv K N k N i N k = E i k N K K i N k = E i
37 36 adantr K N Z S k N i N k = E i k N K K i N k = E i
38 33 37 mpbird K N Z S k N i N k = E i
39 dffo3 E : N onto N E : N N k N i N k = E i
40 3 38 39 sylanbrc K N Z S E : N onto N