Metamath Proof Explorer


Theorem symgextfv

Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019)

Ref Expression
Hypotheses symgext.s S = Base SymGrp N K
symgext.e E = x N if x = K K Z x
Assertion symgextfv K N Z S X N K E X = Z X

Proof

Step Hyp Ref Expression
1 symgext.s S = Base SymGrp N K
2 symgext.e E = x N if x = K K Z x
3 eldifi X N K X N
4 fvexd K N Z S Z X V
5 ifexg K N Z X V if X = K K Z X V
6 4 5 syldan K N Z S if X = K K Z X V
7 eqeq1 x = X x = K X = K
8 fveq2 x = X Z x = Z X
9 7 8 ifbieq2d x = X if x = K K Z x = if X = K K Z X
10 9 2 fvmptg X N if X = K K Z X V E X = if X = K K Z X
11 3 6 10 syl2anr K N Z S X N K E X = if X = K K Z X
12 eldifsnneq X N K ¬ X = K
13 12 adantl K N Z S X N K ¬ X = K
14 13 iffalsed K N Z S X N K if X = K K Z X = Z X
15 11 14 eqtrd K N Z S X N K E X = Z X
16 15 ex K N Z S X N K E X = Z X