Metamath Proof Explorer


Theorem symgextsymg

Description: The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019)

Ref Expression
Hypotheses symgext.s S = Base SymGrp N K
symgext.e E = x N if x = K K Z x
Assertion symgextsymg N V K N Z S E Base SymGrp N

Proof

Step Hyp Ref Expression
1 symgext.s S = Base SymGrp N K
2 symgext.e E = x N if x = K K Z x
3 1 2 symgextf1o K N Z S E : N 1-1 onto N
4 3 3adant1 N V K N Z S E : N 1-1 onto N
5 eqid SymGrp N = SymGrp N
6 eqid Base SymGrp N = Base SymGrp N
7 5 6 elsymgbas N V E Base SymGrp N E : N 1-1 onto N
8 7 3ad2ant1 N V K N Z S E Base SymGrp N E : N 1-1 onto N
9 4 8 mpbird N V K N Z S E Base SymGrp N