Metamath Proof Explorer


Theorem symgextsymg

Description: The extension of a permutation is an element of the extended symmetric group. (Contributed by AV, 9-Mar-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextsymg NVKNZSEBaseSymGrpN

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 1 2 symgextf1o KNZSE:N1-1 ontoN
4 3 3adant1 NVKNZSE:N1-1 ontoN
5 eqid SymGrpN=SymGrpN
6 eqid BaseSymGrpN=BaseSymGrpN
7 5 6 elsymgbas NVEBaseSymGrpNE:N1-1 ontoN
8 7 3ad2ant1 NVKNZSEBaseSymGrpNE:N1-1 ontoN
9 4 8 mpbird NVKNZSEBaseSymGrpN