Step |
Hyp |
Ref |
Expression |
1 |
|
symgsssg.g |
|
2 |
|
symgsssg.b |
|
3 |
|
eqidd |
|
4 |
|
eqidd |
|
5 |
|
eqidd |
|
6 |
|
ssrab2 |
|
7 |
6 2
|
sseqtri |
|
8 |
7
|
a1i |
|
9 |
|
difeq1 |
|
10 |
9
|
dmeqd |
|
11 |
10
|
eleq1d |
|
12 |
1
|
symggrp |
|
13 |
|
eqid |
|
14 |
2 13
|
grpidcl |
|
15 |
12 14
|
syl |
|
16 |
1
|
symgid |
|
17 |
16
|
difeq1d |
|
18 |
17
|
dmeqd |
|
19 |
|
resss |
|
20 |
|
ssdif0 |
|
21 |
19 20
|
mpbi |
|
22 |
21
|
dmeqi |
|
23 |
|
dm0 |
|
24 |
22 23
|
eqtri |
|
25 |
|
0fin |
|
26 |
24 25
|
eqeltri |
|
27 |
18 26
|
eqeltrrdi |
|
28 |
11 15 27
|
elrabd |
|
29 |
|
biid |
|
30 |
|
difeq1 |
|
31 |
30
|
dmeqd |
|
32 |
31
|
eleq1d |
|
33 |
32
|
elrab |
|
34 |
|
difeq1 |
|
35 |
34
|
dmeqd |
|
36 |
35
|
eleq1d |
|
37 |
36
|
elrab |
|
38 |
|
difeq1 |
|
39 |
38
|
dmeqd |
|
40 |
39
|
eleq1d |
|
41 |
12
|
3ad2ant1 |
|
42 |
|
simp2l |
|
43 |
|
simp3l |
|
44 |
|
eqid |
|
45 |
2 44
|
grpcl |
|
46 |
41 42 43 45
|
syl3anc |
|
47 |
1 2 44
|
symgov |
|
48 |
42 43 47
|
syl2anc |
|
49 |
48
|
difeq1d |
|
50 |
49
|
dmeqd |
|
51 |
|
simp2r |
|
52 |
|
simp3r |
|
53 |
|
unfi |
|
54 |
51 52 53
|
syl2anc |
|
55 |
|
mvdco |
|
56 |
|
ssfi |
|
57 |
54 55 56
|
sylancl |
|
58 |
50 57
|
eqeltrd |
|
59 |
40 46 58
|
elrabd |
|
60 |
29 33 37 59
|
syl3anb |
|
61 |
|
difeq1 |
|
62 |
61
|
dmeqd |
|
63 |
62
|
eleq1d |
|
64 |
|
simprl |
|
65 |
|
eqid |
|
66 |
2 65
|
grpinvcl |
|
67 |
12 64 66
|
syl2an2r |
|
68 |
1 2 65
|
symginv |
|
69 |
68
|
ad2antrl |
|
70 |
69
|
difeq1d |
|
71 |
70
|
dmeqd |
|
72 |
1 2
|
symgbasf1o |
|
73 |
72
|
ad2antrl |
|
74 |
|
f1omvdcnv |
|
75 |
73 74
|
syl |
|
76 |
71 75
|
eqtrd |
|
77 |
|
simprr |
|
78 |
76 77
|
eqeltrd |
|
79 |
63 67 78
|
elrabd |
|
80 |
33 79
|
sylan2b |
|
81 |
3 4 5 8 28 60 80 12
|
issubgrpd2 |
|