| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgsssg.g |
|
| 2 |
|
symgsssg.b |
|
| 3 |
|
eqidd |
|
| 4 |
|
eqidd |
|
| 5 |
|
eqidd |
|
| 6 |
|
ssrab2 |
|
| 7 |
6 2
|
sseqtri |
|
| 8 |
7
|
a1i |
|
| 9 |
|
difeq1 |
|
| 10 |
9
|
dmeqd |
|
| 11 |
10
|
eleq1d |
|
| 12 |
1
|
symggrp |
|
| 13 |
|
eqid |
|
| 14 |
2 13
|
grpidcl |
|
| 15 |
12 14
|
syl |
|
| 16 |
1
|
symgid |
|
| 17 |
16
|
difeq1d |
|
| 18 |
17
|
dmeqd |
|
| 19 |
|
resss |
|
| 20 |
|
ssdif0 |
|
| 21 |
19 20
|
mpbi |
|
| 22 |
21
|
dmeqi |
|
| 23 |
|
dm0 |
|
| 24 |
22 23
|
eqtri |
|
| 25 |
|
0fi |
|
| 26 |
24 25
|
eqeltri |
|
| 27 |
18 26
|
eqeltrrdi |
|
| 28 |
11 15 27
|
elrabd |
|
| 29 |
|
biid |
|
| 30 |
|
difeq1 |
|
| 31 |
30
|
dmeqd |
|
| 32 |
31
|
eleq1d |
|
| 33 |
32
|
elrab |
|
| 34 |
|
difeq1 |
|
| 35 |
34
|
dmeqd |
|
| 36 |
35
|
eleq1d |
|
| 37 |
36
|
elrab |
|
| 38 |
|
difeq1 |
|
| 39 |
38
|
dmeqd |
|
| 40 |
39
|
eleq1d |
|
| 41 |
12
|
3ad2ant1 |
|
| 42 |
|
simp2l |
|
| 43 |
|
simp3l |
|
| 44 |
|
eqid |
|
| 45 |
2 44
|
grpcl |
|
| 46 |
41 42 43 45
|
syl3anc |
|
| 47 |
1 2 44
|
symgov |
|
| 48 |
42 43 47
|
syl2anc |
|
| 49 |
48
|
difeq1d |
|
| 50 |
49
|
dmeqd |
|
| 51 |
|
simp2r |
|
| 52 |
|
simp3r |
|
| 53 |
|
unfi |
|
| 54 |
51 52 53
|
syl2anc |
|
| 55 |
|
mvdco |
|
| 56 |
|
ssfi |
|
| 57 |
54 55 56
|
sylancl |
|
| 58 |
50 57
|
eqeltrd |
|
| 59 |
40 46 58
|
elrabd |
|
| 60 |
29 33 37 59
|
syl3anb |
|
| 61 |
|
difeq1 |
|
| 62 |
61
|
dmeqd |
|
| 63 |
62
|
eleq1d |
|
| 64 |
|
simprl |
|
| 65 |
|
eqid |
|
| 66 |
2 65
|
grpinvcl |
|
| 67 |
12 64 66
|
syl2an2r |
|
| 68 |
1 2 65
|
symginv |
|
| 69 |
68
|
ad2antrl |
|
| 70 |
69
|
difeq1d |
|
| 71 |
70
|
dmeqd |
|
| 72 |
1 2
|
symgbasf1o |
|
| 73 |
72
|
ad2antrl |
|
| 74 |
|
f1omvdcnv |
|
| 75 |
73 74
|
syl |
|
| 76 |
71 75
|
eqtrd |
|
| 77 |
|
simprr |
|
| 78 |
76 77
|
eqeltrd |
|
| 79 |
63 67 78
|
elrabd |
|
| 80 |
33 79
|
sylan2b |
|
| 81 |
3 4 5 8 28 60 80 12
|
issubgrpd2 |
|