Metamath Proof Explorer


Theorem symgfixelq

Description: A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P = Base SymGrp N
symgfixf.q Q = q P | q K = K
Assertion symgfixelq F V F Q F : N 1-1 onto N F K = K

Proof

Step Hyp Ref Expression
1 symgfixf.p P = Base SymGrp N
2 symgfixf.q Q = q P | q K = K
3 fveq1 f = F f K = F K
4 3 eqeq1d f = F f K = K F K = K
5 fveq1 q = f q K = f K
6 5 eqeq1d q = f q K = K f K = K
7 6 cbvrabv q P | q K = K = f P | f K = K
8 2 7 eqtri Q = f P | f K = K
9 4 8 elrab2 F Q F P F K = K
10 eqid SymGrp N = SymGrp N
11 10 1 elsymgbas2 F V F P F : N 1-1 onto N
12 11 anbi1d F V F P F K = K F : N 1-1 onto N F K = K
13 9 12 syl5bb F V F Q F : N 1-1 onto N F K = K