Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Permutations fixing one element
symgfixelq
Next ⟩
symgfixels
Metamath Proof Explorer
Ascii
Unicode
Theorem
symgfixelq
Description:
A permutation of a set fixing an element of the set.
(Contributed by
AV
, 4-Jan-2019)
Ref
Expression
Hypotheses
symgfixf.p
⊢
P
=
Base
SymGrp
⁡
N
symgfixf.q
⊢
Q
=
q
∈
P
|
q
⁡
K
=
K
Assertion
symgfixelq
⊢
F
∈
V
→
F
∈
Q
↔
F
:
N
⟶
1-1 onto
N
∧
F
⁡
K
=
K
Proof
Step
Hyp
Ref
Expression
1
symgfixf.p
⊢
P
=
Base
SymGrp
⁡
N
2
symgfixf.q
⊢
Q
=
q
∈
P
|
q
⁡
K
=
K
3
fveq1
⊢
f
=
F
→
f
⁡
K
=
F
⁡
K
4
3
eqeq1d
⊢
f
=
F
→
f
⁡
K
=
K
↔
F
⁡
K
=
K
5
fveq1
⊢
q
=
f
→
q
⁡
K
=
f
⁡
K
6
5
eqeq1d
⊢
q
=
f
→
q
⁡
K
=
K
↔
f
⁡
K
=
K
7
6
cbvrabv
⊢
q
∈
P
|
q
⁡
K
=
K
=
f
∈
P
|
f
⁡
K
=
K
8
2
7
eqtri
⊢
Q
=
f
∈
P
|
f
⁡
K
=
K
9
4
8
elrab2
⊢
F
∈
Q
↔
F
∈
P
∧
F
⁡
K
=
K
10
eqid
⊢
SymGrp
⁡
N
=
SymGrp
⁡
N
11
10
1
elsymgbas2
⊢
F
∈
V
→
F
∈
P
↔
F
:
N
⟶
1-1 onto
N
12
11
anbi1d
⊢
F
∈
V
→
F
∈
P
∧
F
⁡
K
=
K
↔
F
:
N
⟶
1-1 onto
N
∧
F
⁡
K
=
K
13
9
12
syl5bb
⊢
F
∈
V
→
F
∈
Q
↔
F
:
N
⟶
1-1 onto
N
∧
F
⁡
K
=
K