Metamath Proof Explorer


Theorem symgfixels

Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P = Base SymGrp N
symgfixf.q Q = q P | q K = K
symgfixf.s S = Base SymGrp N K
symgfixf.d D = N K
Assertion symgfixels F V F D S F D : D 1-1 onto D

Proof

Step Hyp Ref Expression
1 symgfixf.p P = Base SymGrp N
2 symgfixf.q Q = q P | q K = K
3 symgfixf.s S = Base SymGrp N K
4 symgfixf.d D = N K
5 3 eleq2i F D S F D Base SymGrp N K
6 5 a1i F V F D S F D Base SymGrp N K
7 resexg F V F D V
8 eqid SymGrp N K = SymGrp N K
9 eqid Base SymGrp N K = Base SymGrp N K
10 8 9 elsymgbas2 F D V F D Base SymGrp N K F D : N K 1-1 onto N K
11 7 10 syl F V F D Base SymGrp N K F D : N K 1-1 onto N K
12 eqidd F V F D = F D
13 4 a1i F V D = N K
14 13 eqcomd F V N K = D
15 12 14 14 f1oeq123d F V F D : N K 1-1 onto N K F D : D 1-1 onto D
16 6 11 15 3bitrd F V F D S F D : D 1-1 onto D