Metamath Proof Explorer


Theorem symgfixelsi

Description: The restriction of a permutation fixing an element to the set with this element removed is an element of the restricted symmetric group. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P = Base SymGrp N
symgfixf.q Q = q P | q K = K
symgfixf.s S = Base SymGrp N K
symgfixf.d D = N K
Assertion symgfixelsi K N F Q F D S

Proof

Step Hyp Ref Expression
1 symgfixf.p P = Base SymGrp N
2 symgfixf.q Q = q P | q K = K
3 symgfixf.s S = Base SymGrp N K
4 symgfixf.d D = N K
5 1 2 symgfixelq F Q F Q F : N 1-1 onto N F K = K
6 f1of1 F : N 1-1 onto N F : N 1-1 N
7 6 ad2antrl K N F : N 1-1 onto N F K = K F : N 1-1 N
8 difssd K N F : N 1-1 onto N F K = K N K N
9 f1ores F : N 1-1 N N K N F N K : N K 1-1 onto F N K
10 7 8 9 syl2anc K N F : N 1-1 onto N F K = K F N K : N K 1-1 onto F N K
11 4 reseq2i F D = F N K
12 11 a1i K N F : N 1-1 onto N F K = K F D = F N K
13 4 a1i K N F : N 1-1 onto N F K = K D = N K
14 f1ofo F : N 1-1 onto N F : N onto N
15 foima F : N onto N F N = N
16 15 eqcomd F : N onto N N = F N
17 14 16 syl F : N 1-1 onto N N = F N
18 17 ad2antrl K N F : N 1-1 onto N F K = K N = F N
19 sneq K = F K K = F K
20 19 eqcoms F K = K K = F K
21 20 ad2antll K N F : N 1-1 onto N F K = K K = F K
22 f1ofn F : N 1-1 onto N F Fn N
23 22 ad2antrl K N F : N 1-1 onto N F K = K F Fn N
24 simpl K N F : N 1-1 onto N F K = K K N
25 fnsnfv F Fn N K N F K = F K
26 23 24 25 syl2anc K N F : N 1-1 onto N F K = K F K = F K
27 21 26 eqtrd K N F : N 1-1 onto N F K = K K = F K
28 18 27 difeq12d K N F : N 1-1 onto N F K = K N K = F N F K
29 dff1o2 F : N 1-1 onto N F Fn N Fun F -1 ran F = N
30 29 simp2bi F : N 1-1 onto N Fun F -1
31 30 ad2antrl K N F : N 1-1 onto N F K = K Fun F -1
32 imadif Fun F -1 F N K = F N F K
33 31 32 syl K N F : N 1-1 onto N F K = K F N K = F N F K
34 28 13 33 3eqtr4d K N F : N 1-1 onto N F K = K D = F N K
35 12 13 34 f1oeq123d K N F : N 1-1 onto N F K = K F D : D 1-1 onto D F N K : N K 1-1 onto F N K
36 10 35 mpbird K N F : N 1-1 onto N F K = K F D : D 1-1 onto D
37 36 ancoms F : N 1-1 onto N F K = K K N F D : D 1-1 onto D
38 1 2 3 4 symgfixels F Q F D S F D : D 1-1 onto D
39 37 38 syl5ibr F Q F : N 1-1 onto N F K = K K N F D S
40 39 expd F Q F : N 1-1 onto N F K = K K N F D S
41 5 40 sylbid F Q F Q K N F D S
42 41 pm2.43i F Q K N F D S
43 42 impcom K N F Q F D S