| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgfixf.p |
|
| 2 |
|
symgfixf.q |
|
| 3 |
|
symgfixf.s |
|
| 4 |
|
symgfixf.h |
|
| 5 |
1 2 3 4
|
symgfixf |
|
| 6 |
4
|
fvtresfn |
|
| 7 |
4
|
fvtresfn |
|
| 8 |
6 7
|
eqeqan12d |
|
| 9 |
8
|
adantl |
|
| 10 |
1 2
|
symgfixelq |
|
| 11 |
10
|
elv |
|
| 12 |
1 2
|
symgfixelq |
|
| 13 |
12
|
elv |
|
| 14 |
11 13
|
anbi12i |
|
| 15 |
|
f1ofn |
|
| 16 |
15
|
adantr |
|
| 17 |
|
f1ofn |
|
| 18 |
17
|
adantr |
|
| 19 |
16 18
|
anim12i |
|
| 20 |
|
difss |
|
| 21 |
19 20
|
jctir |
|
| 22 |
21
|
adantl |
|
| 23 |
|
fvreseq |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
f1of |
|
| 26 |
25
|
adantr |
|
| 27 |
|
f1of |
|
| 28 |
27
|
adantr |
|
| 29 |
|
fdm |
|
| 30 |
|
fdm |
|
| 31 |
29 30
|
anim12i |
|
| 32 |
26 28 31
|
syl2an |
|
| 33 |
|
eqtr3 |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
|
simpr |
|
| 37 |
|
eqtr3 |
|
| 38 |
37
|
ad2ant2l |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
|
fveq2 |
|
| 41 |
|
fveq2 |
|
| 42 |
40 41
|
eqeq12d |
|
| 43 |
42
|
ralunsn |
|
| 44 |
43
|
adantr |
|
| 45 |
44
|
adantr |
|
| 46 |
36 39 45
|
mpbir2and |
|
| 47 |
|
f1odm |
|
| 48 |
47
|
adantr |
|
| 49 |
48
|
adantr |
|
| 50 |
|
difsnid |
|
| 51 |
50
|
eqcomd |
|
| 52 |
49 51
|
sylan9eqr |
|
| 53 |
52
|
adantr |
|
| 54 |
46 53
|
raleqtrrdv |
|
| 55 |
|
f1ofun |
|
| 56 |
55
|
adantr |
|
| 57 |
|
f1ofun |
|
| 58 |
57
|
adantr |
|
| 59 |
56 58
|
anim12i |
|
| 60 |
59
|
ad2antlr |
|
| 61 |
|
eqfunfv |
|
| 62 |
60 61
|
syl |
|
| 63 |
35 54 62
|
mpbir2and |
|
| 64 |
63
|
ex |
|
| 65 |
24 64
|
sylbid |
|
| 66 |
14 65
|
sylan2b |
|
| 67 |
9 66
|
sylbid |
|
| 68 |
67
|
ralrimivva |
|
| 69 |
|
dff13 |
|
| 70 |
5 68 69
|
sylanbrc |
|