Metamath Proof Explorer


Theorem symgfixf1o

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P = Base SymGrp N
symgfixf.q Q = q P | q K = K
symgfixf.s S = Base SymGrp N K
symgfixf.h H = q Q q N K
Assertion symgfixf1o N V K N H : Q 1-1 onto S

Proof

Step Hyp Ref Expression
1 symgfixf.p P = Base SymGrp N
2 symgfixf.q Q = q P | q K = K
3 symgfixf.s S = Base SymGrp N K
4 symgfixf.h H = q Q q N K
5 1 2 3 4 symgfixf1 K N H : Q 1-1 S
6 5 adantl N V K N H : Q 1-1 S
7 1 2 3 4 symgfixfo N V K N H : Q onto S
8 df-f1o H : Q 1-1 onto S H : Q 1-1 S H : Q onto S
9 6 7 8 sylanbrc N V K N H : Q 1-1 onto S