Metamath Proof Explorer


Theorem symgfixfo

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P = Base SymGrp N
symgfixf.q Q = q P | q K = K
symgfixf.s S = Base SymGrp N K
symgfixf.h H = q Q q N K
Assertion symgfixfo N V K N H : Q onto S

Proof

Step Hyp Ref Expression
1 symgfixf.p P = Base SymGrp N
2 symgfixf.q Q = q P | q K = K
3 symgfixf.s S = Base SymGrp N K
4 symgfixf.h H = q Q q N K
5 1 2 3 4 symgfixf K N H : Q S
6 5 adantl N V K N H : Q S
7 eqeq1 i = j i = K j = K
8 fveq2 i = j s i = s j
9 7 8 ifbieq2d i = j if i = K K s i = if j = K K s j
10 9 cbvmptv i N if i = K K s i = j N if j = K K s j
11 1 2 3 4 10 symgfixfolem1 N V K N s S i N if i = K K s i Q
12 11 3expa N V K N s S i N if i = K K s i Q
13 simpr N V K N K N
14 13 anim1i N V K N s S K N s S
15 14 adantl p = i N if i = K K s i N V K N s S K N s S
16 eqid i N if i = K K s i = i N if i = K K s i
17 3 16 symgextres K N s S i N if i = K K s i N K = s
18 15 17 syl p = i N if i = K K s i N V K N s S i N if i = K K s i N K = s
19 18 eqcomd p = i N if i = K K s i N V K N s S s = i N if i = K K s i N K
20 reseq1 p = i N if i = K K s i p N K = i N if i = K K s i N K
21 20 eqeq2d p = i N if i = K K s i s = p N K s = i N if i = K K s i N K
22 21 adantr p = i N if i = K K s i N V K N s S s = p N K s = i N if i = K K s i N K
23 19 22 mpbird p = i N if i = K K s i N V K N s S s = p N K
24 23 ex p = i N if i = K K s i N V K N s S s = p N K
25 24 adantl N V K N s S p = i N if i = K K s i N V K N s S s = p N K
26 12 25 rspcimedv N V K N s S N V K N s S p Q s = p N K
27 26 pm2.43i N V K N s S p Q s = p N K
28 4 fvtresfn p Q H p = p N K
29 28 eqeq2d p Q s = H p s = p N K
30 29 adantl N V K N s S p Q s = H p s = p N K
31 30 rexbidva N V K N s S p Q s = H p p Q s = p N K
32 27 31 mpbird N V K N s S p Q s = H p
33 32 ralrimiva N V K N s S p Q s = H p
34 dffo3 H : Q onto S H : Q S s S p Q s = H p
35 6 33 34 sylanbrc N V K N H : Q onto S