Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Permutations fixing one element
symgfixfolem1
Next ⟩
symgfixfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
symgfixfolem1
Description:
Lemma 1 for
symgfixfo
.
(Contributed by
AV
, 7-Jan-2019)
Ref
Expression
Hypotheses
symgfixf.p
⊢
P
=
Base
SymGrp
⁡
N
symgfixf.q
⊢
Q
=
q
∈
P
|
q
⁡
K
=
K
symgfixf.s
⊢
S
=
Base
SymGrp
⁡
N
∖
K
symgfixf.h
⊢
H
=
q
∈
Q
⟼
q
↾
N
∖
K
symgfixfo.e
⊢
E
=
x
∈
N
⟼
if
x
=
K
K
Z
⁡
x
Assertion
symgfixfolem1
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
E
∈
Q
Proof
Step
Hyp
Ref
Expression
1
symgfixf.p
⊢
P
=
Base
SymGrp
⁡
N
2
symgfixf.q
⊢
Q
=
q
∈
P
|
q
⁡
K
=
K
3
symgfixf.s
⊢
S
=
Base
SymGrp
⁡
N
∖
K
4
symgfixf.h
⊢
H
=
q
∈
Q
⟼
q
↾
N
∖
K
5
symgfixfo.e
⊢
E
=
x
∈
N
⟼
if
x
=
K
K
Z
⁡
x
6
3
5
symgextf1o
⊢
K
∈
N
∧
Z
∈
S
→
E
:
N
⟶
1-1 onto
N
7
6
3adant1
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
E
:
N
⟶
1-1 onto
N
8
iftrue
⊢
x
=
K
→
if
x
=
K
K
Z
⁡
x
=
K
9
simp2
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
K
∈
N
10
5
8
9
9
fvmptd3
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
E
⁡
K
=
K
11
mptexg
⊢
N
∈
V
→
x
∈
N
⟼
if
x
=
K
K
Z
⁡
x
∈
V
12
11
3ad2ant1
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
x
∈
N
⟼
if
x
=
K
K
Z
⁡
x
∈
V
13
5
12
eqeltrid
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
E
∈
V
14
1
2
symgfixelq
⊢
E
∈
V
→
E
∈
Q
↔
E
:
N
⟶
1-1 onto
N
∧
E
⁡
K
=
K
15
13
14
syl
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
E
∈
Q
↔
E
:
N
⟶
1-1 onto
N
∧
E
⁡
K
=
K
16
7
10
15
mpbir2and
⊢
N
∈
V
∧
K
∈
N
∧
Z
∈
S
→
E
∈
Q