Metamath Proof Explorer


Theorem symgfixfolem1

Description: Lemma 1 for symgfixfo . (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P = Base SymGrp N
symgfixf.q Q = q P | q K = K
symgfixf.s S = Base SymGrp N K
symgfixf.h H = q Q q N K
symgfixfo.e E = x N if x = K K Z x
Assertion symgfixfolem1 N V K N Z S E Q

Proof

Step Hyp Ref Expression
1 symgfixf.p P = Base SymGrp N
2 symgfixf.q Q = q P | q K = K
3 symgfixf.s S = Base SymGrp N K
4 symgfixf.h H = q Q q N K
5 symgfixfo.e E = x N if x = K K Z x
6 3 5 symgextf1o K N Z S E : N 1-1 onto N
7 6 3adant1 N V K N Z S E : N 1-1 onto N
8 iftrue x = K if x = K K Z x = K
9 simp2 N V K N Z S K N
10 5 8 9 9 fvmptd3 N V K N Z S E K = K
11 mptexg N V x N if x = K K Z x V
12 11 3ad2ant1 N V K N Z S x N if x = K K Z x V
13 5 12 eqeltrid N V K N Z S E V
14 1 2 symgfixelq E V E Q E : N 1-1 onto N E K = K
15 13 14 syl N V K N Z S E Q E : N 1-1 onto N E K = K
16 7 10 15 mpbir2and N V K N Z S E Q