Metamath Proof Explorer


Theorem symgfv

Description: The function value of a permutation. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgfv F B X A F X A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 1 2 symgbasf F B F : A A
4 3 ffvelrnda F B X A F X A