Metamath Proof Explorer


Theorem symgfvne

Description: The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symgfvne F B X A Y A F X = Z Y X F Y Z

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 1 2 symgbasf1o F B F : A 1-1 onto A
4 f1of1 F : A 1-1 onto A F : A 1-1 A
5 eqeq2 Z = F X F Y = Z F Y = F X
6 5 eqcoms F X = Z F Y = Z F Y = F X
7 6 adantl F : A 1-1 A X A Y A F X = Z F Y = Z F Y = F X
8 simp1 F : A 1-1 A X A Y A F : A 1-1 A
9 simp3 F : A 1-1 A X A Y A Y A
10 simp2 F : A 1-1 A X A Y A X A
11 f1veqaeq F : A 1-1 A Y A X A F Y = F X Y = X
12 8 9 10 11 syl12anc F : A 1-1 A X A Y A F Y = F X Y = X
13 12 adantr F : A 1-1 A X A Y A F X = Z F Y = F X Y = X
14 7 13 sylbid F : A 1-1 A X A Y A F X = Z F Y = Z Y = X
15 14 necon3d F : A 1-1 A X A Y A F X = Z Y X F Y Z
16 15 3exp1 F : A 1-1 A X A Y A F X = Z Y X F Y Z
17 3 4 16 3syl F B X A Y A F X = Z Y X F Y Z
18 17 3imp F B X A Y A F X = Z Y X F Y Z