Metamath Proof Explorer


Theorem symgga

Description: The symmetric group induces a group action on its base set. (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypotheses symgga.g G = SymGrp X
symgga.b B = Base G
symgga.f F = f B , x X f x
Assertion symgga X V F G GrpAct X

Proof

Step Hyp Ref Expression
1 symgga.g G = SymGrp X
2 symgga.b B = Base G
3 symgga.f F = f B , x X f x
4 1 symggrp X V G Grp
5 2 idghm G Grp I B G GrpHom G
6 fvresi f B I B f = f
7 6 adantr f B x X I B f = f
8 7 fveq1d f B x X I B f x = f x
9 8 mpoeq3ia f B , x X I B f x = f B , x X f x
10 3 9 eqtr4i F = f B , x X I B f x
11 2 1 10 lactghmga I B G GrpHom G F G GrpAct X
12 4 5 11 3syl X V F G GrpAct X