Metamath Proof Explorer


Theorem symggen2

Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in Rotman p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses symgtrf.t T = ran pmTrsp D
symgtrf.g G = SymGrp D
symgtrf.b B = Base G
symggen.k K = mrCls SubMnd G
Assertion symggen2 D Fin K T = B

Proof

Step Hyp Ref Expression
1 symgtrf.t T = ran pmTrsp D
2 symgtrf.g G = SymGrp D
3 symgtrf.b B = Base G
4 symggen.k K = mrCls SubMnd G
5 1 2 3 4 symggen D Fin K T = x B | dom x I Fin
6 difss x I x
7 dmss x I x dom x I dom x
8 6 7 ax-mp dom x I dom x
9 2 3 symgbasf1o x B x : D 1-1 onto D
10 f1odm x : D 1-1 onto D dom x = D
11 9 10 syl x B dom x = D
12 8 11 sseqtrid x B dom x I D
13 ssfi D Fin dom x I D dom x I Fin
14 12 13 sylan2 D Fin x B dom x I Fin
15 14 ralrimiva D Fin x B dom x I Fin
16 rabid2 B = x B | dom x I Fin x B dom x I Fin
17 15 16 sylibr D Fin B = x B | dom x I Fin
18 5 17 eqtr4d D Fin K T = B