Metamath Proof Explorer


Theorem symggrp

Description: The symmetric group on a set A is a group. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 28-Jan-2024)

Ref Expression
Hypothesis symggrp.1 G = SymGrp A
Assertion symggrp A V G Grp

Proof

Step Hyp Ref Expression
1 symggrp.1 G = SymGrp A
2 eqidd A V Base G = Base G
3 eqidd A V + G = + G
4 eqid Base G = Base G
5 eqid + G = + G
6 1 4 5 symgcl x Base G y Base G x + G y Base G
7 6 3adant1 A V x Base G y Base G x + G y Base G
8 1 4 5 symgcl f Base G g Base G f + G g Base G
9 1 4 5 symgov f Base G g Base G f + G g = f g
10 8 9 symggrplem x Base G y Base G z Base G x + G y + G z = x + G y + G z
11 10 adantl A V x Base G y Base G z Base G x + G y + G z = x + G y + G z
12 1 idresperm A V I A Base G
13 1 4 5 symgov I A Base G x Base G I A + G x = I A x
14 12 13 sylan A V x Base G I A + G x = I A x
15 1 4 elsymgbas A V x Base G x : A 1-1 onto A
16 15 biimpa A V x Base G x : A 1-1 onto A
17 f1of x : A 1-1 onto A x : A A
18 fcoi2 x : A A I A x = x
19 16 17 18 3syl A V x Base G I A x = x
20 14 19 eqtrd A V x Base G I A + G x = x
21 f1ocnv x : A 1-1 onto A x -1 : A 1-1 onto A
22 21 a1i A V x : A 1-1 onto A x -1 : A 1-1 onto A
23 1 4 elsymgbas A V x -1 Base G x -1 : A 1-1 onto A
24 22 15 23 3imtr4d A V x Base G x -1 Base G
25 24 imp A V x Base G x -1 Base G
26 1 4 5 symgov x -1 Base G x Base G x -1 + G x = x -1 x
27 25 26 sylancom A V x Base G x -1 + G x = x -1 x
28 f1ococnv1 x : A 1-1 onto A x -1 x = I A
29 16 28 syl A V x Base G x -1 x = I A
30 27 29 eqtrd A V x Base G x -1 + G x = I A
31 2 3 7 11 12 20 25 30 isgrpd A V G Grp