| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symggrp.1 |
|
| 2 |
|
eqidd |
|
| 3 |
|
eqidd |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
1 4 5
|
symgcl |
|
| 7 |
6
|
3adant1 |
|
| 8 |
1 4 5
|
symgcl |
|
| 9 |
1 4 5
|
symgov |
|
| 10 |
8 9
|
symggrplem |
|
| 11 |
10
|
adantl |
|
| 12 |
1
|
idresperm |
|
| 13 |
1 4 5
|
symgov |
|
| 14 |
12 13
|
sylan |
|
| 15 |
1 4
|
elsymgbas |
|
| 16 |
15
|
biimpa |
|
| 17 |
|
f1of |
|
| 18 |
|
fcoi2 |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
14 19
|
eqtrd |
|
| 21 |
|
f1ocnv |
|
| 22 |
21
|
a1i |
|
| 23 |
1 4
|
elsymgbas |
|
| 24 |
22 15 23
|
3imtr4d |
|
| 25 |
24
|
imp |
|
| 26 |
1 4 5
|
symgov |
|
| 27 |
25 26
|
sylancom |
|
| 28 |
|
f1ococnv1 |
|
| 29 |
16 28
|
syl |
|
| 30 |
27 29
|
eqtrd |
|
| 31 |
2 3 7 11 12 20 25 30
|
isgrpd |
|