| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symggrplem.c |
|
| 2 |
|
symggrplem.p |
|
| 3 |
|
coass |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
5 7 1
|
vtocl2ga |
|
| 9 |
|
oveq1 |
|
| 10 |
|
coeq1 |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
|
oveq2 |
|
| 13 |
|
coeq2 |
|
| 14 |
12 13
|
eqeq12d |
|
| 15 |
11 14 2
|
vtocl2ga |
|
| 16 |
8 15
|
stoic3 |
|
| 17 |
|
coeq1 |
|
| 18 |
4 17
|
eqeq12d |
|
| 19 |
|
coeq2 |
|
| 20 |
6 19
|
eqeq12d |
|
| 21 |
18 20 2
|
vtocl2ga |
|
| 22 |
21
|
3adant3 |
|
| 23 |
22
|
coeq1d |
|
| 24 |
16 23
|
eqtrd |
|
| 25 |
|
simp1 |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
eleq1d |
|
| 30 |
27 29 1
|
vtocl2ga |
|
| 31 |
30
|
3adant1 |
|
| 32 |
|
oveq2 |
|
| 33 |
|
coeq2 |
|
| 34 |
32 33
|
eqeq12d |
|
| 35 |
18 34 2
|
vtocl2ga |
|
| 36 |
25 31 35
|
syl2anc |
|
| 37 |
|
coeq1 |
|
| 38 |
26 37
|
eqeq12d |
|
| 39 |
|
coeq2 |
|
| 40 |
28 39
|
eqeq12d |
|
| 41 |
38 40 2
|
vtocl2ga |
|
| 42 |
41
|
3adant1 |
|
| 43 |
42
|
coeq2d |
|
| 44 |
36 43
|
eqtrd |
|
| 45 |
3 24 44
|
3eqtr4a |
|