Step |
Hyp |
Ref |
Expression |
1 |
|
symggrplem.c |
|
2 |
|
symggrplem.p |
|
3 |
|
coass |
|
4 |
|
oveq1 |
|
5 |
4
|
eleq1d |
|
6 |
|
oveq2 |
|
7 |
6
|
eleq1d |
|
8 |
5 7 1
|
vtocl2ga |
|
9 |
|
oveq1 |
|
10 |
|
coeq1 |
|
11 |
9 10
|
eqeq12d |
|
12 |
|
oveq2 |
|
13 |
|
coeq2 |
|
14 |
12 13
|
eqeq12d |
|
15 |
11 14 2
|
vtocl2ga |
|
16 |
8 15
|
stoic3 |
|
17 |
|
coeq1 |
|
18 |
4 17
|
eqeq12d |
|
19 |
|
coeq2 |
|
20 |
6 19
|
eqeq12d |
|
21 |
18 20 2
|
vtocl2ga |
|
22 |
21
|
3adant3 |
|
23 |
22
|
coeq1d |
|
24 |
16 23
|
eqtrd |
|
25 |
|
simp1 |
|
26 |
|
oveq1 |
|
27 |
26
|
eleq1d |
|
28 |
|
oveq2 |
|
29 |
28
|
eleq1d |
|
30 |
27 29 1
|
vtocl2ga |
|
31 |
30
|
3adant1 |
|
32 |
|
oveq2 |
|
33 |
|
coeq2 |
|
34 |
32 33
|
eqeq12d |
|
35 |
18 34 2
|
vtocl2ga |
|
36 |
25 31 35
|
syl2anc |
|
37 |
|
coeq1 |
|
38 |
26 37
|
eqeq12d |
|
39 |
|
coeq2 |
|
40 |
28 39
|
eqeq12d |
|
41 |
38 40 2
|
vtocl2ga |
|
42 |
41
|
3adant1 |
|
43 |
42
|
coeq2d |
|
44 |
36 43
|
eqtrd |
|
45 |
3 24 44
|
3eqtr4a |
|