Metamath Proof Explorer


Theorem symghash

Description: The symmetric group on n objects has cardinality n ! . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion symghash A Fin B = A !

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 1 2 symgbas B = f | f : A 1-1 onto A
4 3 fveq2i B = f | f : A 1-1 onto A
5 hashfac A Fin f | f : A 1-1 onto A = A !
6 4 5 eqtrid A Fin B = A !