Metamath Proof Explorer


Theorem symgid

Description: The group identity element of the symmetric group on a set A . (Contributed by Paul Chapman, 25-Jul-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 1-Apr-2024)

Ref Expression
Hypothesis symggrp.1 G = SymGrp A
Assertion symgid A V I A = 0 G

Proof

Step Hyp Ref Expression
1 symggrp.1 G = SymGrp A
2 eqid EndoFMnd A = EndoFMnd A
3 2 efmndid A V I A = 0 EndoFMnd A
4 eqid Base G = Base G
5 2 1 4 symgsubmefmnd A V Base G SubMnd EndoFMnd A
6 1 4 2 symgressbas G = EndoFMnd A 𝑠 Base G
7 eqid 0 EndoFMnd A = 0 EndoFMnd A
8 6 7 subm0 Base G SubMnd EndoFMnd A 0 EndoFMnd A = 0 G
9 5 8 syl A V 0 EndoFMnd A = 0 G
10 3 9 eqtrd A V I A = 0 G