Metamath Proof Explorer


Theorem symgid

Description: The group identity element of the symmetric group on a set A . (Contributed by Paul Chapman, 25-Jul-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 1-Apr-2024)

Ref Expression
Hypothesis symggrp.1 G = SymGrp A
Assertion symgid A V I A = 0 G

Proof

Step Hyp Ref Expression
1 symggrp.1 G = SymGrp A
2 eqid Could not format ( EndoFMnd ` A ) = ( EndoFMnd ` A ) : No typesetting found for |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) with typecode |-
3 2 efmndid Could not format ( A e. V -> ( _I |` A ) = ( 0g ` ( EndoFMnd ` A ) ) ) : No typesetting found for |- ( A e. V -> ( _I |` A ) = ( 0g ` ( EndoFMnd ` A ) ) ) with typecode |-
4 eqid Base G = Base G
5 2 1 4 symgsubmefmnd Could not format ( A e. V -> ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) : No typesetting found for |- ( A e. V -> ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) with typecode |-
6 1 4 2 symgressbas Could not format G = ( ( EndoFMnd ` A ) |`s ( Base ` G ) ) : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s ( Base ` G ) ) with typecode |-
7 eqid Could not format ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` ( EndoFMnd ` A ) ) : No typesetting found for |- ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` ( EndoFMnd ` A ) ) with typecode |-
8 6 7 subm0 Could not format ( ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) : No typesetting found for |- ( ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) with typecode |-
9 5 8 syl Could not format ( A e. V -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) : No typesetting found for |- ( A e. V -> ( 0g ` ( EndoFMnd ` A ) ) = ( 0g ` G ) ) with typecode |-
10 3 9 eqtrd A V I A = 0 G