Metamath Proof Explorer


Theorem symgmov1

Description: For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019)

Ref Expression
Hypothesis symgmov1.p P = Base SymGrp N
Assertion symgmov1 Q P n N k N Q n = k

Proof

Step Hyp Ref Expression
1 symgmov1.p P = Base SymGrp N
2 eqid SymGrp N = SymGrp N
3 2 1 symgfv Q P n N Q n N
4 clel5 Q n N k N Q n = k
5 3 4 sylib Q P n N k N Q n = k
6 5 ralrimiva Q P n N k N Q n = k