Metamath Proof Explorer


Theorem symgov

Description: The value of the group operation of the symmetric group on A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Revised by AV, 30-Mar-2024)

Ref Expression
Hypotheses symgov.1 G = SymGrp A
symgov.2 B = Base G
symgov.3 + ˙ = + G
Assertion symgov X B Y B X + ˙ Y = X Y

Proof

Step Hyp Ref Expression
1 symgov.1 G = SymGrp A
2 symgov.2 B = Base G
3 symgov.3 + ˙ = + G
4 eqid A A = A A
5 1 4 3 symgplusg + ˙ = f A A , g A A f g
6 5 a1i X B Y B + ˙ = f A A , g A A f g
7 simpl f = X g = Y f = X
8 simpr f = X g = Y g = Y
9 7 8 coeq12d f = X g = Y f g = X Y
10 9 adantl X B Y B f = X g = Y f g = X Y
11 1 2 symgbasmap X B X A A
12 11 adantr X B Y B X A A
13 1 2 symgbasmap Y B Y A A
14 13 adantl X B Y B Y A A
15 coexg X B Y B X Y V
16 6 10 12 14 15 ovmpod X B Y B X + ˙ Y = X Y