Metamath Proof Explorer


Theorem symgplusg

Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015) (Proof shortened by AV, 19-Feb-2024) (Revised by AV, 29-Mar-2024) (Proof shortened by AV, 14-Aug-2024)

Ref Expression
Hypotheses symgplusg.1 G = SymGrp A
symgplusg.2 B = A A
symgplusg.3 + ˙ = + G
Assertion symgplusg + ˙ = f B , g B f g

Proof

Step Hyp Ref Expression
1 symgplusg.1 G = SymGrp A
2 symgplusg.2 B = A A
3 symgplusg.3 + ˙ = + G
4 f1osetex f | f : A 1-1 onto A V
5 eqid EndoFMnd A 𝑠 f | f : A 1-1 onto A = EndoFMnd A 𝑠 f | f : A 1-1 onto A
6 eqid + EndoFMnd A = + EndoFMnd A
7 5 6 ressplusg f | f : A 1-1 onto A V + EndoFMnd A = + EndoFMnd A 𝑠 f | f : A 1-1 onto A
8 4 7 ax-mp + EndoFMnd A = + EndoFMnd A 𝑠 f | f : A 1-1 onto A
9 eqid f | f : A 1-1 onto A = f | f : A 1-1 onto A
10 1 9 symgval G = EndoFMnd A 𝑠 f | f : A 1-1 onto A
11 10 eqcomi EndoFMnd A 𝑠 f | f : A 1-1 onto A = G
12 11 fveq2i + EndoFMnd A 𝑠 f | f : A 1-1 onto A = + G
13 8 12 eqtri + EndoFMnd A = + G
14 eqid EndoFMnd A = EndoFMnd A
15 eqid Base EndoFMnd A = Base EndoFMnd A
16 14 15 efmndbas Base EndoFMnd A = A A
17 2 16 eqtr4i B = Base EndoFMnd A
18 14 17 6 efmndplusg + EndoFMnd A = f B , g B f g
19 3 13 18 3eqtr2i + ˙ = f B , g B f g