Metamath Proof Explorer


Theorem symgsubmefmndALT

Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses symgsubmefmndALT.m No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
symgsubmefmndALT.g G = SymGrp A
symgsubmefmndALT.b B = Base G
Assertion symgsubmefmndALT A V B SubMnd M

Proof

Step Hyp Ref Expression
1 symgsubmefmndALT.m Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
2 symgsubmefmndALT.g G = SymGrp A
3 symgsubmefmndALT.b B = Base G
4 1 efmndmnd A V M Mnd
5 2 3 1 symgressbas G = M 𝑠 B
6 2 symggrp A V G Grp
7 grpmnd G Grp G Mnd
8 6 7 syl A V G Mnd
9 5 8 eqeltrrid A V M 𝑠 B Mnd
10 2 idresperm A V I A Base G
11 1 efmndid A V I A = 0 M
12 3 eqcomi Base G = B
13 12 a1i A V Base G = B
14 10 11 13 3eltr3d A V 0 M B
15 2 3 symgbasmap f B f A A
16 15 ssriv B A A
17 eqid Base M = Base M
18 1 17 efmndbas Base M = A A
19 16 18 sseqtrri B Base M
20 14 19 jctil A V B Base M 0 M B
21 eqid 0 M = 0 M
22 17 21 issubmndb B SubMnd M M Mnd M 𝑠 B Mnd B Base M 0 M B
23 4 9 20 22 syl21anbrc A V B SubMnd M