Metamath Proof Explorer


Theorem symgtgp

Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015) (Proof shortened by AV, 30-Mar-2024)

Ref Expression
Hypothesis symgtgp.g G = SymGrp A
Assertion symgtgp A V G TopGrp

Proof

Step Hyp Ref Expression
1 symgtgp.g G = SymGrp A
2 1 symggrp A V G Grp
3 eqid Could not format ( EndoFMnd ` A ) = ( EndoFMnd ` A ) : No typesetting found for |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) with typecode |-
4 3 efmndtmd Could not format ( A e. V -> ( EndoFMnd ` A ) e. TopMnd ) : No typesetting found for |- ( A e. V -> ( EndoFMnd ` A ) e. TopMnd ) with typecode |-
5 eqid Base G = Base G
6 3 1 5 symgsubmefmnd Could not format ( A e. V -> ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) : No typesetting found for |- ( A e. V -> ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) with typecode |-
7 1 5 3 symgressbas Could not format G = ( ( EndoFMnd ` A ) |`s ( Base ` G ) ) : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s ( Base ` G ) ) with typecode |-
8 7 submtmd Could not format ( ( ( EndoFMnd ` A ) e. TopMnd /\ ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) -> G e. TopMnd ) : No typesetting found for |- ( ( ( EndoFMnd ` A ) e. TopMnd /\ ( Base ` G ) e. ( SubMnd ` ( EndoFMnd ` A ) ) ) -> G e. TopMnd ) with typecode |-
9 4 6 8 syl2anc A V G TopMnd
10 eqid 𝑡 A × 𝒫 A = 𝑡 A × 𝒫 A
11 1 5 symgtopn A V 𝑡 A × 𝒫 A 𝑡 Base G = TopOpen G
12 distopon A V 𝒫 A TopOn A
13 10 pttoponconst A V 𝒫 A TopOn A 𝑡 A × 𝒫 A TopOn A A
14 12 13 mpdan A V 𝑡 A × 𝒫 A TopOn A A
15 1 5 elsymgbas A V x Base G x : A 1-1 onto A
16 f1of x : A 1-1 onto A x : A A
17 elmapg A V A V x A A x : A A
18 17 anidms A V x A A x : A A
19 16 18 syl5ibr A V x : A 1-1 onto A x A A
20 15 19 sylbid A V x Base G x A A
21 20 ssrdv A V Base G A A
22 resttopon 𝑡 A × 𝒫 A TopOn A A Base G A A 𝑡 A × 𝒫 A 𝑡 Base G TopOn Base G
23 14 21 22 syl2anc A V 𝑡 A × 𝒫 A 𝑡 Base G TopOn Base G
24 11 23 eqeltrrd A V TopOpen G TopOn Base G
25 id A V A V
26 distop A V 𝒫 A Top
27 fconst6g 𝒫 A Top A × 𝒫 A : A Top
28 26 27 syl A V A × 𝒫 A : A Top
29 15 biimpa A V x Base G x : A 1-1 onto A
30 f1ocnv x : A 1-1 onto A x -1 : A 1-1 onto A
31 f1of x -1 : A 1-1 onto A x -1 : A A
32 29 30 31 3syl A V x Base G x -1 : A A
33 32 ffvelrnda A V x Base G y A x -1 y A
34 33 an32s A V y A x Base G x -1 y A
35 34 fmpttd A V y A x Base G x -1 y : Base G A
36 35 adantr A V y A f Base G x Base G x -1 y : Base G A
37 cnveq x = f x -1 = f -1
38 37 fveq1d x = f x -1 y = f -1 y
39 eqid x Base G x -1 y = x Base G x -1 y
40 fvex f -1 y V
41 38 39 40 fvmpt f Base G x Base G x -1 y f = f -1 y
42 41 ad2antlr A V y A f Base G t 𝒫 A x Base G x -1 y f = f -1 y
43 42 eleq1d A V y A f Base G t 𝒫 A x Base G x -1 y f t f -1 y t
44 eqid u Base G u f -1 y = u Base G u f -1 y
45 44 mptiniseg y V u Base G u f -1 y -1 y = u Base G | u f -1 y = y
46 45 elv u Base G u f -1 y -1 y = u Base G | u f -1 y = y
47 eqid 𝑡 A × 𝒫 A 𝑡 Base G = 𝑡 A × 𝒫 A 𝑡 Base G
48 14 ad2antrr A V y A f Base G 𝑡 A × 𝒫 A TopOn A A
49 21 ad2antrr A V y A f Base G Base G A A
50 toponuni 𝑡 A × 𝒫 A TopOn A A A A = 𝑡 A × 𝒫 A
51 mpteq1 A A = 𝑡 A × 𝒫 A u A A u f -1 y = u 𝑡 A × 𝒫 A u f -1 y
52 48 50 51 3syl A V y A f Base G u A A u f -1 y = u 𝑡 A × 𝒫 A u f -1 y
53 simpll A V y A f Base G A V
54 28 ad2antrr A V y A f Base G A × 𝒫 A : A Top
55 1 5 elsymgbas A V f Base G f : A 1-1 onto A
56 55 adantr A V y A f Base G f : A 1-1 onto A
57 56 biimpa A V y A f Base G f : A 1-1 onto A
58 f1ocnv f : A 1-1 onto A f -1 : A 1-1 onto A
59 f1of f -1 : A 1-1 onto A f -1 : A A
60 57 58 59 3syl A V y A f Base G f -1 : A A
61 simplr A V y A f Base G y A
62 60 61 ffvelrnd A V y A f Base G f -1 y A
63 eqid 𝑡 A × 𝒫 A = 𝑡 A × 𝒫 A
64 63 10 ptpjcn A V A × 𝒫 A : A Top f -1 y A u 𝑡 A × 𝒫 A u f -1 y 𝑡 A × 𝒫 A Cn A × 𝒫 A f -1 y
65 53 54 62 64 syl3anc A V y A f Base G u 𝑡 A × 𝒫 A u f -1 y 𝑡 A × 𝒫 A Cn A × 𝒫 A f -1 y
66 26 ad2antrr A V y A f Base G 𝒫 A Top
67 fvconst2g 𝒫 A Top f -1 y A A × 𝒫 A f -1 y = 𝒫 A
68 66 62 67 syl2anc A V y A f Base G A × 𝒫 A f -1 y = 𝒫 A
69 68 oveq2d A V y A f Base G 𝑡 A × 𝒫 A Cn A × 𝒫 A f -1 y = 𝑡 A × 𝒫 A Cn 𝒫 A
70 65 69 eleqtrd A V y A f Base G u 𝑡 A × 𝒫 A u f -1 y 𝑡 A × 𝒫 A Cn 𝒫 A
71 52 70 eqeltrd A V y A f Base G u A A u f -1 y 𝑡 A × 𝒫 A Cn 𝒫 A
72 47 48 49 71 cnmpt1res A V y A f Base G u Base G u f -1 y 𝑡 A × 𝒫 A 𝑡 Base G Cn 𝒫 A
73 11 oveq1d A V 𝑡 A × 𝒫 A 𝑡 Base G Cn 𝒫 A = TopOpen G Cn 𝒫 A
74 73 ad2antrr A V y A f Base G 𝑡 A × 𝒫 A 𝑡 Base G Cn 𝒫 A = TopOpen G Cn 𝒫 A
75 72 74 eleqtrd A V y A f Base G u Base G u f -1 y TopOpen G Cn 𝒫 A
76 snelpwi y A y 𝒫 A
77 76 ad2antlr A V y A f Base G y 𝒫 A
78 cnima u Base G u f -1 y TopOpen G Cn 𝒫 A y 𝒫 A u Base G u f -1 y -1 y TopOpen G
79 75 77 78 syl2anc A V y A f Base G u Base G u f -1 y -1 y TopOpen G
80 46 79 eqeltrrid A V y A f Base G u Base G | u f -1 y = y TopOpen G
81 80 adantr A V y A f Base G t 𝒫 A f -1 y t u Base G | u f -1 y = y TopOpen G
82 fveq1 u = f u f -1 y = f f -1 y
83 82 eqeq1d u = f u f -1 y = y f f -1 y = y
84 simplr A V y A f Base G t 𝒫 A f -1 y t f Base G
85 57 adantr A V y A f Base G t 𝒫 A f -1 y t f : A 1-1 onto A
86 simpllr A V y A f Base G t 𝒫 A f -1 y t y A
87 f1ocnvfv2 f : A 1-1 onto A y A f f -1 y = y
88 85 86 87 syl2anc A V y A f Base G t 𝒫 A f -1 y t f f -1 y = y
89 83 84 88 elrabd A V y A f Base G t 𝒫 A f -1 y t f u Base G | u f -1 y = y
90 ssrab2 u Base G | u f -1 y = y Base G
91 90 a1i A V y A f Base G t 𝒫 A f -1 y t u Base G | u f -1 y = y Base G
92 15 ad3antrrr A V y A f Base G t 𝒫 A f -1 y t x Base G x : A 1-1 onto A
93 92 biimpa A V y A f Base G t 𝒫 A f -1 y t x Base G x : A 1-1 onto A
94 62 ad2antrr A V y A f Base G t 𝒫 A f -1 y t x Base G f -1 y A
95 f1ocnvfv x : A 1-1 onto A f -1 y A x f -1 y = y x -1 y = f -1 y
96 93 94 95 syl2anc A V y A f Base G t 𝒫 A f -1 y t x Base G x f -1 y = y x -1 y = f -1 y
97 simplrr A V y A f Base G t 𝒫 A f -1 y t x Base G f -1 y t
98 eleq1 x -1 y = f -1 y x -1 y t f -1 y t
99 97 98 syl5ibrcom A V y A f Base G t 𝒫 A f -1 y t x Base G x -1 y = f -1 y x -1 y t
100 96 99 syld A V y A f Base G t 𝒫 A f -1 y t x Base G x f -1 y = y x -1 y t
101 100 ralrimiva A V y A f Base G t 𝒫 A f -1 y t x Base G x f -1 y = y x -1 y t
102 fveq1 u = x u f -1 y = x f -1 y
103 102 eqeq1d u = x u f -1 y = y x f -1 y = y
104 103 ralrab x u Base G | u f -1 y = y x -1 y t x Base G x f -1 y = y x -1 y t
105 101 104 sylibr A V y A f Base G t 𝒫 A f -1 y t x u Base G | u f -1 y = y x -1 y t
106 ssrab u Base G | u f -1 y = y x Base G | x -1 y t u Base G | u f -1 y = y Base G x u Base G | u f -1 y = y x -1 y t
107 91 105 106 sylanbrc A V y A f Base G t 𝒫 A f -1 y t u Base G | u f -1 y = y x Base G | x -1 y t
108 39 mptpreima x Base G x -1 y -1 t = x Base G | x -1 y t
109 107 108 sseqtrrdi A V y A f Base G t 𝒫 A f -1 y t u Base G | u f -1 y = y x Base G x -1 y -1 t
110 funmpt Fun x Base G x -1 y
111 fvex x -1 y V
112 111 39 dmmpti dom x Base G x -1 y = Base G
113 91 112 sseqtrrdi A V y A f Base G t 𝒫 A f -1 y t u Base G | u f -1 y = y dom x Base G x -1 y
114 funimass3 Fun x Base G x -1 y u Base G | u f -1 y = y dom x Base G x -1 y x Base G x -1 y u Base G | u f -1 y = y t u Base G | u f -1 y = y x Base G x -1 y -1 t
115 110 113 114 sylancr A V y A f Base G t 𝒫 A f -1 y t x Base G x -1 y u Base G | u f -1 y = y t u Base G | u f -1 y = y x Base G x -1 y -1 t
116 109 115 mpbird A V y A f Base G t 𝒫 A f -1 y t x Base G x -1 y u Base G | u f -1 y = y t
117 eleq2 v = u Base G | u f -1 y = y f v f u Base G | u f -1 y = y
118 imaeq2 v = u Base G | u f -1 y = y x Base G x -1 y v = x Base G x -1 y u Base G | u f -1 y = y
119 118 sseq1d v = u Base G | u f -1 y = y x Base G x -1 y v t x Base G x -1 y u Base G | u f -1 y = y t
120 117 119 anbi12d v = u Base G | u f -1 y = y f v x Base G x -1 y v t f u Base G | u f -1 y = y x Base G x -1 y u Base G | u f -1 y = y t
121 120 rspcev u Base G | u f -1 y = y TopOpen G f u Base G | u f -1 y = y x Base G x -1 y u Base G | u f -1 y = y t v TopOpen G f v x Base G x -1 y v t
122 81 89 116 121 syl12anc A V y A f Base G t 𝒫 A f -1 y t v TopOpen G f v x Base G x -1 y v t
123 122 expr A V y A f Base G t 𝒫 A f -1 y t v TopOpen G f v x Base G x -1 y v t
124 43 123 sylbid A V y A f Base G t 𝒫 A x Base G x -1 y f t v TopOpen G f v x Base G x -1 y v t
125 124 ralrimiva A V y A f Base G t 𝒫 A x Base G x -1 y f t v TopOpen G f v x Base G x -1 y v t
126 24 ad2antrr A V y A f Base G TopOpen G TopOn Base G
127 12 ad2antrr A V y A f Base G 𝒫 A TopOn A
128 simpr A V y A f Base G f Base G
129 iscnp TopOpen G TopOn Base G 𝒫 A TopOn A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f x Base G x -1 y : Base G A t 𝒫 A x Base G x -1 y f t v TopOpen G f v x Base G x -1 y v t
130 126 127 128 129 syl3anc A V y A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f x Base G x -1 y : Base G A t 𝒫 A x Base G x -1 y f t v TopOpen G f v x Base G x -1 y v t
131 36 125 130 mpbir2and A V y A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f
132 131 ralrimiva A V y A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f
133 cncnp TopOpen G TopOn Base G 𝒫 A TopOn A x Base G x -1 y TopOpen G Cn 𝒫 A x Base G x -1 y : Base G A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f
134 24 12 133 syl2anc A V x Base G x -1 y TopOpen G Cn 𝒫 A x Base G x -1 y : Base G A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f
135 134 adantr A V y A x Base G x -1 y TopOpen G Cn 𝒫 A x Base G x -1 y : Base G A f Base G x Base G x -1 y TopOpen G CnP 𝒫 A f
136 35 132 135 mpbir2and A V y A x Base G x -1 y TopOpen G Cn 𝒫 A
137 fvconst2g 𝒫 A Top y A A × 𝒫 A y = 𝒫 A
138 26 137 sylan A V y A A × 𝒫 A y = 𝒫 A
139 138 oveq2d A V y A TopOpen G Cn A × 𝒫 A y = TopOpen G Cn 𝒫 A
140 136 139 eleqtrrd A V y A x Base G x -1 y TopOpen G Cn A × 𝒫 A y
141 10 24 25 28 140 ptcn A V x Base G y A x -1 y TopOpen G Cn 𝑡 A × 𝒫 A
142 eqid inv g G = inv g G
143 5 142 grpinvf G Grp inv g G : Base G Base G
144 2 143 syl A V inv g G : Base G Base G
145 144 feqmptd A V inv g G = x Base G inv g G x
146 1 5 142 symginv x Base G inv g G x = x -1
147 146 adantl A V x Base G inv g G x = x -1
148 32 feqmptd A V x Base G x -1 = y A x -1 y
149 147 148 eqtrd A V x Base G inv g G x = y A x -1 y
150 149 mpteq2dva A V x Base G inv g G x = x Base G y A x -1 y
151 145 150 eqtrd A V inv g G = x Base G y A x -1 y
152 xkopt 𝒫 A Top A V 𝒫 A ^ ko 𝒫 A = 𝑡 A × 𝒫 A
153 26 152 mpancom A V 𝒫 A ^ ko 𝒫 A = 𝑡 A × 𝒫 A
154 153 oveq2d A V TopOpen G Cn 𝒫 A ^ ko 𝒫 A = TopOpen G Cn 𝑡 A × 𝒫 A
155 141 151 154 3eltr4d A V inv g G TopOpen G Cn 𝒫 A ^ ko 𝒫 A
156 eqid 𝒫 A ^ ko 𝒫 A = 𝒫 A ^ ko 𝒫 A
157 156 xkotopon 𝒫 A Top 𝒫 A Top 𝒫 A ^ ko 𝒫 A TopOn 𝒫 A Cn 𝒫 A
158 26 26 157 syl2anc A V 𝒫 A ^ ko 𝒫 A TopOn 𝒫 A Cn 𝒫 A
159 frn inv g G : Base G Base G ran inv g G Base G
160 2 143 159 3syl A V ran inv g G Base G
161 cndis A V 𝒫 A TopOn A 𝒫 A Cn 𝒫 A = A A
162 12 161 mpdan A V 𝒫 A Cn 𝒫 A = A A
163 21 162 sseqtrrd A V Base G 𝒫 A Cn 𝒫 A
164 cnrest2 𝒫 A ^ ko 𝒫 A TopOn 𝒫 A Cn 𝒫 A ran inv g G Base G Base G 𝒫 A Cn 𝒫 A inv g G TopOpen G Cn 𝒫 A ^ ko 𝒫 A inv g G TopOpen G Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base G
165 158 160 163 164 syl3anc A V inv g G TopOpen G Cn 𝒫 A ^ ko 𝒫 A inv g G TopOpen G Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base G
166 155 165 mpbid A V inv g G TopOpen G Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base G
167 153 oveq1d A V 𝒫 A ^ ko 𝒫 A 𝑡 Base G = 𝑡 A × 𝒫 A 𝑡 Base G
168 167 11 eqtrd A V 𝒫 A ^ ko 𝒫 A 𝑡 Base G = TopOpen G
169 168 oveq2d A V TopOpen G Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base G = TopOpen G Cn TopOpen G
170 166 169 eleqtrd A V inv g G TopOpen G Cn TopOpen G
171 eqid TopOpen G = TopOpen G
172 171 142 istgp G TopGrp G Grp G TopMnd inv g G TopOpen G Cn TopOpen G
173 2 9 170 172 syl3anbrc A V G TopGrp