Metamath Proof Explorer


Theorem symgtopn

Description: The topology of the symmetric group on A . (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypotheses symgga.g G = SymGrp X
symgga.b B = Base G
Assertion symgtopn X V 𝑡 X × 𝒫 X 𝑡 B = TopOpen G

Proof

Step Hyp Ref Expression
1 symgga.g G = SymGrp X
2 symgga.b B = Base G
3 1 symgtset X V 𝑡 X × 𝒫 X = TopSet G
4 3 oveq1d X V 𝑡 X × 𝒫 X 𝑡 B = TopSet G 𝑡 B
5 eqid TopSet G = TopSet G
6 2 5 topnval TopSet G 𝑡 B = TopOpen G
7 4 6 eqtrdi X V 𝑡 X × 𝒫 X 𝑡 B = TopOpen G