Database
BASIC ALGEBRAIC STRUCTURES
Groups
Symmetric groups
Definition and basic properties
symgtopn
Next ⟩
symgga
Metamath Proof Explorer
Ascii
Unicode
Theorem
symgtopn
Description:
The topology of the symmetric group on
A
.
(Contributed by
Mario Carneiro
, 29-Aug-2015)
Ref
Expression
Hypotheses
symgga.g
⊢
G
=
SymGrp
⁡
X
symgga.b
⊢
B
=
Base
G
Assertion
symgtopn
⊢
X
∈
V
→
∏
𝑡
⁡
X
×
𝒫
X
↾
𝑡
B
=
TopOpen
⁡
G
Proof
Step
Hyp
Ref
Expression
1
symgga.g
⊢
G
=
SymGrp
⁡
X
2
symgga.b
⊢
B
=
Base
G
3
1
symgtset
⊢
X
∈
V
→
∏
𝑡
⁡
X
×
𝒫
X
=
TopSet
⁡
G
4
3
oveq1d
⊢
X
∈
V
→
∏
𝑡
⁡
X
×
𝒫
X
↾
𝑡
B
=
TopSet
⁡
G
↾
𝑡
B
5
eqid
⊢
TopSet
⁡
G
=
TopSet
⁡
G
6
2
5
topnval
⊢
TopSet
⁡
G
↾
𝑡
B
=
TopOpen
⁡
G
7
4
6
eqtrdi
⊢
X
∈
V
→
∏
𝑡
⁡
X
×
𝒫
X
↾
𝑡
B
=
TopOpen
⁡
G