Metamath Proof Explorer


Theorem symgtrf

Description: Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Hypotheses symgtrf.t T = ran pmTrsp D
symgtrf.g G = SymGrp D
symgtrf.b B = Base G
Assertion symgtrf T B

Proof

Step Hyp Ref Expression
1 symgtrf.t T = ran pmTrsp D
2 symgtrf.g G = SymGrp D
3 symgtrf.b B = Base G
4 eqid pmTrsp D = pmTrsp D
5 4 1 pmtrff1o x T x : D 1-1 onto D
6 2 3 elsymgbas2 x T x B x : D 1-1 onto D
7 5 6 mpbird x T x B
8 7 ssriv T B