Metamath Proof Explorer


Theorem symgtrinv

Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Hypotheses symgtrinv.t T = ran pmTrsp D
symgtrinv.g G = SymGrp D
symgtrinv.i I = inv g G
Assertion symgtrinv D V W Word T I G W = G reverse W

Proof

Step Hyp Ref Expression
1 symgtrinv.t T = ran pmTrsp D
2 symgtrinv.g G = SymGrp D
3 symgtrinv.i I = inv g G
4 2 symggrp D V G Grp
5 eqid opp 𝑔 G = opp 𝑔 G
6 5 3 invoppggim G Grp I G GrpIso opp 𝑔 G
7 gimghm I G GrpIso opp 𝑔 G I G GrpHom opp 𝑔 G
8 ghmmhm I G GrpHom opp 𝑔 G I G MndHom opp 𝑔 G
9 4 6 7 8 4syl D V I G MndHom opp 𝑔 G
10 eqid Base G = Base G
11 1 2 10 symgtrf T Base G
12 sswrd T Base G Word T Word Base G
13 11 12 ax-mp Word T Word Base G
14 13 sseli W Word T W Word Base G
15 10 gsumwmhm I G MndHom opp 𝑔 G W Word Base G I G W = opp 𝑔 G I W
16 9 14 15 syl2an D V W Word T I G W = opp 𝑔 G I W
17 10 3 grpinvf G Grp I : Base G Base G
18 4 17 syl D V I : Base G Base G
19 wrdf W Word T W : 0 ..^ W T
20 19 adantl D V W Word T W : 0 ..^ W T
21 fss W : 0 ..^ W T T Base G W : 0 ..^ W Base G
22 20 11 21 sylancl D V W Word T W : 0 ..^ W Base G
23 fco I : Base G Base G W : 0 ..^ W Base G I W : 0 ..^ W Base G
24 18 22 23 syl2an2r D V W Word T I W : 0 ..^ W Base G
25 24 ffnd D V W Word T I W Fn 0 ..^ W
26 20 ffnd D V W Word T W Fn 0 ..^ W
27 fvco2 W Fn 0 ..^ W x 0 ..^ W I W x = I W x
28 26 27 sylan D V W Word T x 0 ..^ W I W x = I W x
29 20 ffvelrnda D V W Word T x 0 ..^ W W x T
30 11 29 sselid D V W Word T x 0 ..^ W W x Base G
31 2 10 3 symginv W x Base G I W x = W x -1
32 30 31 syl D V W Word T x 0 ..^ W I W x = W x -1
33 eqid pmTrsp D = pmTrsp D
34 33 1 pmtrfcnv W x T W x -1 = W x
35 29 34 syl D V W Word T x 0 ..^ W W x -1 = W x
36 28 32 35 3eqtrd D V W Word T x 0 ..^ W I W x = W x
37 25 26 36 eqfnfvd D V W Word T I W = W
38 37 oveq2d D V W Word T opp 𝑔 G I W = opp 𝑔 G W
39 4 grpmndd D V G Mnd
40 10 5 gsumwrev G Mnd W Word Base G opp 𝑔 G W = G reverse W
41 39 14 40 syl2an D V W Word T opp 𝑔 G W = G reverse W
42 16 38 41 3eqtrd D V W Word T I G W = G reverse W