Metamath Proof Explorer


Theorem symgtset

Description: The topology of the symmetric group on A . This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015) (Proof revised by AV, 30-Mar-2024.)

Ref Expression
Hypothesis symggrp.1 G = SymGrp A
Assertion symgtset A V 𝑡 A × 𝒫 A = TopSet G

Proof

Step Hyp Ref Expression
1 symggrp.1 G = SymGrp A
2 eqid EndoFMnd A = EndoFMnd A
3 2 efmndtset A V 𝑡 A × 𝒫 A = TopSet EndoFMnd A
4 eqid Base G = Base G
5 1 4 symgbas Base G = f | f : A 1-1 onto A
6 fvexd A V Base G V
7 5 6 eqeltrrid A V f | f : A 1-1 onto A V
8 eqid EndoFMnd A 𝑠 f | f : A 1-1 onto A = EndoFMnd A 𝑠 f | f : A 1-1 onto A
9 eqid TopSet EndoFMnd A = TopSet EndoFMnd A
10 8 9 resstset f | f : A 1-1 onto A V TopSet EndoFMnd A = TopSet EndoFMnd A 𝑠 f | f : A 1-1 onto A
11 7 10 syl A V TopSet EndoFMnd A = TopSet EndoFMnd A 𝑠 f | f : A 1-1 onto A
12 eqid f | f : A 1-1 onto A = f | f : A 1-1 onto A
13 1 12 symgval G = EndoFMnd A 𝑠 f | f : A 1-1 onto A
14 13 eqcomi EndoFMnd A 𝑠 f | f : A 1-1 onto A = G
15 14 fveq2i TopSet EndoFMnd A 𝑠 f | f : A 1-1 onto A = TopSet G
16 15 a1i A V TopSet EndoFMnd A 𝑠 f | f : A 1-1 onto A = TopSet G
17 3 11 16 3eqtrd A V 𝑡 A × 𝒫 A = TopSet G