Metamath Proof Explorer


Theorem symgtset

Description: The topology of the symmetric group on A . This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015) (Proof revised by AV, 30-Mar-2024.)

Ref Expression
Hypothesis symggrp.1 G = SymGrp A
Assertion symgtset A V 𝑡 A × 𝒫 A = TopSet G

Proof

Step Hyp Ref Expression
1 symggrp.1 G = SymGrp A
2 eqid Could not format ( EndoFMnd ` A ) = ( EndoFMnd ` A ) : No typesetting found for |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) with typecode |-
3 2 efmndtset Could not format ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` ( EndoFMnd ` A ) ) ) : No typesetting found for |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` ( EndoFMnd ` A ) ) ) with typecode |-
4 eqid Base G = Base G
5 1 4 symgbas Base G = f | f : A 1-1 onto A
6 fvexd A V Base G V
7 5 6 eqeltrrid A V f | f : A 1-1 onto A V
8 eqid Could not format ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) : No typesetting found for |- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) with typecode |-
9 eqid Could not format ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( EndoFMnd ` A ) ) : No typesetting found for |- ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( EndoFMnd ` A ) ) with typecode |-
10 8 9 resstset Could not format ( { f | f : A -1-1-onto-> A } e. _V -> ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) : No typesetting found for |- ( { f | f : A -1-1-onto-> A } e. _V -> ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) with typecode |-
11 7 10 syl Could not format ( A e. V -> ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) : No typesetting found for |- ( A e. V -> ( TopSet ` ( EndoFMnd ` A ) ) = ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) ) with typecode |-
12 eqid f | f : A 1-1 onto A = f | f : A 1-1 onto A
13 1 12 symgval Could not format G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) with typecode |-
14 13 eqcomi Could not format ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = G : No typesetting found for |- ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) = G with typecode |-
15 14 fveq2i Could not format ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( TopSet ` G ) : No typesetting found for |- ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( TopSet ` G ) with typecode |-
16 15 a1i Could not format ( A e. V -> ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( TopSet ` G ) ) : No typesetting found for |- ( A e. V -> ( TopSet ` ( ( EndoFMnd ` A ) |`s { f | f : A -1-1-onto-> A } ) ) = ( TopSet ` G ) ) with typecode |-
17 3 11 16 3eqtrd A V 𝑡 A × 𝒫 A = TopSet G