Metamath Proof Explorer


Theorem symgval

Description: The value of the symmetric group function at A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 12-Jan-2015) (Revised by AV, 28-Mar-2024)

Ref Expression
Hypotheses symgval.1 G = SymGrp A
symgval.2 B = x | x : A 1-1 onto A
Assertion symgval Could not format assertion : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s B ) with typecode |-

Proof

Step Hyp Ref Expression
1 symgval.1 G = SymGrp A
2 symgval.2 B = x | x : A 1-1 onto A
3 df-symg Could not format SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) : No typesetting found for |- SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) with typecode |-
4 3 a1i Could not format ( A e. _V -> SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) ) : No typesetting found for |- ( A e. _V -> SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) ) with typecode |-
5 fveq2 Could not format ( x = A -> ( EndoFMnd ` x ) = ( EndoFMnd ` A ) ) : No typesetting found for |- ( x = A -> ( EndoFMnd ` x ) = ( EndoFMnd ` A ) ) with typecode |-
6 eqidd x = A h = h
7 id x = A x = A
8 6 7 7 f1oeq123d x = A h : x 1-1 onto x h : A 1-1 onto A
9 8 abbidv x = A h | h : x 1-1 onto x = h | h : A 1-1 onto A
10 f1oeq1 h = x h : A 1-1 onto A x : A 1-1 onto A
11 10 cbvabv h | h : A 1-1 onto A = x | x : A 1-1 onto A
12 9 11 eqtrdi x = A h | h : x 1-1 onto x = x | x : A 1-1 onto A
13 12 2 eqtr4di x = A h | h : x 1-1 onto x = B
14 5 13 oveq12d Could not format ( x = A -> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) = ( ( EndoFMnd ` A ) |`s B ) ) : No typesetting found for |- ( x = A -> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) = ( ( EndoFMnd ` A ) |`s B ) ) with typecode |-
15 14 adantl Could not format ( ( A e. _V /\ x = A ) -> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) = ( ( EndoFMnd ` A ) |`s B ) ) : No typesetting found for |- ( ( A e. _V /\ x = A ) -> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) = ( ( EndoFMnd ` A ) |`s B ) ) with typecode |-
16 id A V A V
17 ovexd Could not format ( A e. _V -> ( ( EndoFMnd ` A ) |`s B ) e. _V ) : No typesetting found for |- ( A e. _V -> ( ( EndoFMnd ` A ) |`s B ) e. _V ) with typecode |-
18 nfv x A V
19 nfcv _ x A
20 nfcv Could not format F/_ x ( EndoFMnd ` A ) : No typesetting found for |- F/_ x ( EndoFMnd ` A ) with typecode |-
21 nfcv _ x 𝑠
22 nfab1 _ x x | x : A 1-1 onto A
23 2 22 nfcxfr _ x B
24 20 21 23 nfov Could not format F/_ x ( ( EndoFMnd ` A ) |`s B ) : No typesetting found for |- F/_ x ( ( EndoFMnd ` A ) |`s B ) with typecode |-
25 4 15 16 17 18 19 24 fvmptdf Could not format ( A e. _V -> ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) ) : No typesetting found for |- ( A e. _V -> ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) ) with typecode |-
26 ress0 𝑠 B =
27 26 a1i ¬ A V 𝑠 B =
28 fvprc Could not format ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) : No typesetting found for |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) with typecode |-
29 28 oveq1d Could not format ( -. A e. _V -> ( ( EndoFMnd ` A ) |`s B ) = ( (/) |`s B ) ) : No typesetting found for |- ( -. A e. _V -> ( ( EndoFMnd ` A ) |`s B ) = ( (/) |`s B ) ) with typecode |-
30 fvprc ¬ A V SymGrp A =
31 27 29 30 3eqtr4rd Could not format ( -. A e. _V -> ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) ) : No typesetting found for |- ( -. A e. _V -> ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) ) with typecode |-
32 25 31 pm2.61i Could not format ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) : No typesetting found for |- ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) with typecode |-
33 1 32 eqtri Could not format G = ( ( EndoFMnd ` A ) |`s B ) : No typesetting found for |- G = ( ( EndoFMnd ` A ) |`s B ) with typecode |-