Metamath Proof Explorer


Theorem symgval

Description: The value of the symmetric group function at A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 12-Jan-2015) (Revised by AV, 28-Mar-2024)

Ref Expression
Hypotheses symgval.1 G = SymGrp A
symgval.2 B = x | x : A 1-1 onto A
Assertion symgval G = EndoFMnd A 𝑠 B

Proof

Step Hyp Ref Expression
1 symgval.1 G = SymGrp A
2 symgval.2 B = x | x : A 1-1 onto A
3 df-symg SymGrp = x V EndoFMnd x 𝑠 h | h : x 1-1 onto x
4 3 a1i A V SymGrp = x V EndoFMnd x 𝑠 h | h : x 1-1 onto x
5 fveq2 x = A EndoFMnd x = EndoFMnd A
6 eqidd x = A h = h
7 id x = A x = A
8 6 7 7 f1oeq123d x = A h : x 1-1 onto x h : A 1-1 onto A
9 8 abbidv x = A h | h : x 1-1 onto x = h | h : A 1-1 onto A
10 f1oeq1 h = x h : A 1-1 onto A x : A 1-1 onto A
11 10 cbvabv h | h : A 1-1 onto A = x | x : A 1-1 onto A
12 9 11 eqtrdi x = A h | h : x 1-1 onto x = x | x : A 1-1 onto A
13 12 2 eqtr4di x = A h | h : x 1-1 onto x = B
14 5 13 oveq12d x = A EndoFMnd x 𝑠 h | h : x 1-1 onto x = EndoFMnd A 𝑠 B
15 14 adantl A V x = A EndoFMnd x 𝑠 h | h : x 1-1 onto x = EndoFMnd A 𝑠 B
16 id A V A V
17 ovexd A V EndoFMnd A 𝑠 B V
18 nfv x A V
19 nfcv _ x A
20 nfcv _ x EndoFMnd A
21 nfcv _ x 𝑠
22 nfab1 _ x x | x : A 1-1 onto A
23 2 22 nfcxfr _ x B
24 20 21 23 nfov _ x EndoFMnd A 𝑠 B
25 4 15 16 17 18 19 24 fvmptdf A V SymGrp A = EndoFMnd A 𝑠 B
26 ress0 𝑠 B =
27 26 a1i ¬ A V 𝑠 B =
28 fvprc ¬ A V EndoFMnd A =
29 28 oveq1d ¬ A V EndoFMnd A 𝑠 B = 𝑠 B
30 fvprc ¬ A V SymGrp A =
31 27 29 30 3eqtr4rd ¬ A V SymGrp A = EndoFMnd A 𝑠 B
32 25 31 pm2.61i SymGrp A = EndoFMnd A 𝑠 B
33 1 32 eqtri G = EndoFMnd A 𝑠 B