Metamath Proof Explorer


Theorem symgvalstructOLD

Description: Obsolete proof of symgvalstruct as of 6-Nov-2024. The value of the symmetric group function at A represented as extensible structure with three slots. This corresponds to the former definition of SymGrp . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 12-Jan-2015) (Revised by AV, 31-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses symgvalstructOLD.g G = SymGrp A
symgvalstructOLD.b B = x | x : A 1-1 onto A
symgvalstructOLD.m M = A A
symgvalstructOLD.p + ˙ = f M , g M f g
symgvalstructOLD.j J = 𝑡 A × 𝒫 A
Assertion symgvalstructOLD A V G = Base ndx B + ndx + ˙ TopSet ndx J

Proof

Step Hyp Ref Expression
1 symgvalstructOLD.g G = SymGrp A
2 symgvalstructOLD.b B = x | x : A 1-1 onto A
3 symgvalstructOLD.m M = A A
4 symgvalstructOLD.p + ˙ = f M , g M f g
5 symgvalstructOLD.j J = 𝑡 A × 𝒫 A
6 hashv01gt1 A V A = 0 A = 1 1 < A
7 hasheq0 A V A = 0 A =
8 0symgefmndeq EndoFMnd = SymGrp
9 8 eqcomi SymGrp = EndoFMnd
10 fveq2 A = SymGrp A = SymGrp
11 1 10 eqtrid A = G = SymGrp
12 fveq2 A = EndoFMnd A = EndoFMnd
13 9 11 12 3eqtr4a A = G = EndoFMnd A
14 13 adantl A V A = G = EndoFMnd A
15 eqid EndoFMnd A = EndoFMnd A
16 15 3 4 5 efmnd A V EndoFMnd A = Base ndx M + ndx + ˙ TopSet ndx J
17 16 adantr A V A = EndoFMnd A = Base ndx M + ndx + ˙ TopSet ndx J
18 0map0sn0 =
19 id A = A =
20 19 19 oveq12d A = A A =
21 11 fveq2d A = Base G = Base SymGrp
22 eqid Base G = Base G
23 1 22 symgbas Base G = x | x : A 1-1 onto A
24 symgbas0 Base SymGrp =
25 21 23 24 3eqtr3g A = x | x : A 1-1 onto A =
26 2 25 eqtrid A = B =
27 18 20 26 3eqtr4a A = A A = B
28 27 adantl A V A = A A = B
29 3 28 eqtrid A V A = M = B
30 29 opeq2d A V A = Base ndx M = Base ndx B
31 30 tpeq1d A V A = Base ndx M + ndx + ˙ TopSet ndx J = Base ndx B + ndx + ˙ TopSet ndx J
32 14 17 31 3eqtrd A V A = G = Base ndx B + ndx + ˙ TopSet ndx J
33 32 ex A V A = G = Base ndx B + ndx + ˙ TopSet ndx J
34 7 33 sylbid A V A = 0 G = Base ndx B + ndx + ˙ TopSet ndx J
35 hash1snb A V A = 1 x A = x
36 snex x V
37 eleq1 A = x A V x V
38 36 37 mpbiri A = x A V
39 15 3 4 5 efmnd A V EndoFMnd A = Base ndx M + ndx + ˙ TopSet ndx J
40 38 39 syl A = x EndoFMnd A = Base ndx M + ndx + ˙ TopSet ndx J
41 snsymgefmndeq A = x EndoFMnd A = SymGrp A
42 41 1 eqtr4di A = x EndoFMnd A = G
43 42 fveq2d A = x Base EndoFMnd A = Base G
44 eqid Base EndoFMnd A = Base EndoFMnd A
45 15 44 efmndbas Base EndoFMnd A = A A
46 45 3 eqtr4i Base EndoFMnd A = M
47 23 2 eqtr4i Base G = B
48 43 46 47 3eqtr3g A = x M = B
49 48 opeq2d A = x Base ndx M = Base ndx B
50 49 tpeq1d A = x Base ndx M + ndx + ˙ TopSet ndx J = Base ndx B + ndx + ˙ TopSet ndx J
51 40 42 50 3eqtr3d A = x G = Base ndx B + ndx + ˙ TopSet ndx J
52 51 exlimiv x A = x G = Base ndx B + ndx + ˙ TopSet ndx J
53 35 52 biimtrdi A V A = 1 G = Base ndx B + ndx + ˙ TopSet ndx J
54 ssnpss A A B ¬ B A A
55 15 1 symgpssefmnd A V 1 < A Base G Base EndoFMnd A
56 2 23 eqtr4i B = Base G
57 45 eqcomi A A = Base EndoFMnd A
58 56 57 psseq12i B A A Base G Base EndoFMnd A
59 55 58 sylibr A V 1 < A B A A
60 54 59 nsyl3 A V 1 < A ¬ A A B
61 fvexd A V 1 < A EndoFMnd A V
62 f1osetex x | x : A 1-1 onto A V
63 2 62 eqeltri B V
64 63 a1i A V 1 < A B V
65 1 2 symgval G = EndoFMnd A 𝑠 B
66 65 57 ressval2 ¬ A A B EndoFMnd A V B V G = EndoFMnd A sSet Base ndx B A A
67 60 61 64 66 syl3anc A V 1 < A G = EndoFMnd A sSet Base ndx B A A
68 ovex A A V
69 68 inex2 B A A V
70 setsval EndoFMnd A V B A A V EndoFMnd A sSet Base ndx B A A = EndoFMnd A V Base ndx Base ndx B A A
71 61 69 70 sylancl A V 1 < A EndoFMnd A sSet Base ndx B A A = EndoFMnd A V Base ndx Base ndx B A A
72 16 adantr A V 1 < A EndoFMnd A = Base ndx M + ndx + ˙ TopSet ndx J
73 72 reseq1d A V 1 < A EndoFMnd A V Base ndx = Base ndx M + ndx + ˙ TopSet ndx J V Base ndx
74 73 uneq1d A V 1 < A EndoFMnd A V Base ndx Base ndx B A A = Base ndx M + ndx + ˙ TopSet ndx J V Base ndx Base ndx B A A
75 eqidd A V 1 < A Base ndx M + ndx + ˙ TopSet ndx J = Base ndx M + ndx + ˙ TopSet ndx J
76 fvexd A V 1 < A + ndx V
77 fvexd A V 1 < A TopSet ndx V
78 3 68 eqeltri M V
79 78 78 mpoex f M , g M f g V
80 4 79 eqeltri + ˙ V
81 80 a1i A V 1 < A + ˙ V
82 5 fvexi J V
83 82 a1i A V 1 < A J V
84 basendxnplusgndx Base ndx + ndx
85 84 necomi + ndx Base ndx
86 85 a1i A V 1 < A + ndx Base ndx
87 tsetndx TopSet ndx = 9
88 1re 1
89 1lt9 1 < 9
90 88 89 gtneii 9 1
91 df-base Base = Slot 1
92 1nn 1
93 91 92 ndxarg Base ndx = 1
94 90 93 neeqtrri 9 Base ndx
95 87 94 eqnetri TopSet ndx Base ndx
96 95 a1i A V 1 < A TopSet ndx Base ndx
97 75 76 77 81 83 86 96 tpres A V 1 < A Base ndx M + ndx + ˙ TopSet ndx J V Base ndx = + ndx + ˙ TopSet ndx J
98 97 uneq1d A V 1 < A Base ndx M + ndx + ˙ TopSet ndx J V Base ndx Base ndx B A A = + ndx + ˙ TopSet ndx J Base ndx B A A
99 uncom + ndx + ˙ TopSet ndx J Base ndx B A A = Base ndx B A A + ndx + ˙ TopSet ndx J
100 tpass Base ndx B A A + ndx + ˙ TopSet ndx J = Base ndx B A A + ndx + ˙ TopSet ndx J
101 99 100 eqtr4i + ndx + ˙ TopSet ndx J Base ndx B A A = Base ndx B A A + ndx + ˙ TopSet ndx J
102 1 56 symgbasmap x B x A A
103 102 a1i A V 1 < A x B x A A
104 103 ssrdv A V 1 < A B A A
105 dfss2 B A A B A A = B
106 104 105 sylib A V 1 < A B A A = B
107 106 opeq2d A V 1 < A Base ndx B A A = Base ndx B
108 107 tpeq1d A V 1 < A Base ndx B A A + ndx + ˙ TopSet ndx J = Base ndx B + ndx + ˙ TopSet ndx J
109 101 108 eqtrid A V 1 < A + ndx + ˙ TopSet ndx J Base ndx B A A = Base ndx B + ndx + ˙ TopSet ndx J
110 74 98 109 3eqtrd A V 1 < A EndoFMnd A V Base ndx Base ndx B A A = Base ndx B + ndx + ˙ TopSet ndx J
111 67 71 110 3eqtrd A V 1 < A G = Base ndx B + ndx + ˙ TopSet ndx J
112 111 ex A V 1 < A G = Base ndx B + ndx + ˙ TopSet ndx J
113 34 53 112 3jaod A V A = 0 A = 1 1 < A G = Base ndx B + ndx + ˙ TopSet ndx J
114 6 113 mpd A V G = Base ndx B + ndx + ˙ TopSet ndx J