Metamath Proof Explorer


Theorem t0dist

Description: Any two distinct points in a T_0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 X = J
Assertion t0dist J Kol2 A X B X A B o J ¬ A o B o

Proof

Step Hyp Ref Expression
1 ist0.1 X = J
2 1 t0sep J Kol2 A X B X o J A o B o A = B
3 2 necon3ad J Kol2 A X B X A B ¬ o J A o B o
4 3 exp32 J Kol2 A X B X A B ¬ o J A o B o
5 4 3imp2 J Kol2 A X B X A B ¬ o J A o B o
6 rexnal o J ¬ A o B o ¬ o J A o B o
7 5 6 sylibr J Kol2 A X B X A B o J ¬ A o B o