Metamath Proof Explorer


Theorem t0kq

Description: A topological space is T_0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t0kq.1 F = x X y J | x y
Assertion t0kq J TopOn X J Kol2 F J Homeo KQ J

Proof

Step Hyp Ref Expression
1 t0kq.1 F = x X y J | x y
2 simpl J TopOn X J Kol2 J TopOn X
3 1 ist0-4 J TopOn X J Kol2 F : X 1-1 V
4 3 biimpa J TopOn X J Kol2 F : X 1-1 V
5 2 4 qtopf1 J TopOn X J Kol2 F J Homeo J qTop F
6 1 kqval J TopOn X KQ J = J qTop F
7 6 adantr J TopOn X J Kol2 KQ J = J qTop F
8 7 oveq2d J TopOn X J Kol2 J Homeo KQ J = J Homeo J qTop F
9 5 8 eleqtrrd J TopOn X J Kol2 F J Homeo KQ J
10 hmphi F J Homeo KQ J J KQ J
11 hmphsym J KQ J KQ J J
12 10 11 syl F J Homeo KQ J KQ J J
13 1 kqt0lem J TopOn X KQ J Kol2
14 t0hmph KQ J J KQ J Kol2 J Kol2
15 12 13 14 syl2im F J Homeo KQ J J TopOn X J Kol2
16 15 impcom J TopOn X F J Homeo KQ J J Kol2
17 9 16 impbida J TopOn X J Kol2 F J Homeo KQ J