Description: A topological space is T_0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t0kq.1 | |
|
| Assertion | t0kq | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0kq.1 | |
|
| 2 | simpl | |
|
| 3 | 1 | ist0-4 | |
| 4 | 3 | biimpa | |
| 5 | 2 4 | qtopf1 | |
| 6 | 1 | kqval | |
| 7 | 6 | adantr | |
| 8 | 7 | oveq2d | |
| 9 | 5 8 | eleqtrrd | |
| 10 | hmphi | |
|
| 11 | hmphsym | |
|
| 12 | 10 11 | syl | |
| 13 | 1 | kqt0lem | |
| 14 | t0hmph | |
|
| 15 | 12 13 14 | syl2im | |
| 16 | 15 | impcom | |
| 17 | 9 16 | impbida | |