Metamath Proof Explorer


Theorem t0sep

Description: Any two topologically indistinguishable points in a T_0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis ist0.1 X = J
Assertion t0sep J Kol2 A X B X x J A x B x A = B

Proof

Step Hyp Ref Expression
1 ist0.1 X = J
2 1 ist0 J Kol2 J Top y X z X x J y x z x y = z
3 2 simprbi J Kol2 y X z X x J y x z x y = z
4 eleq1 y = A y x A x
5 4 bibi1d y = A y x z x A x z x
6 5 ralbidv y = A x J y x z x x J A x z x
7 eqeq1 y = A y = z A = z
8 6 7 imbi12d y = A x J y x z x y = z x J A x z x A = z
9 eleq1 z = B z x B x
10 9 bibi2d z = B A x z x A x B x
11 10 ralbidv z = B x J A x z x x J A x B x
12 eqeq2 z = B A = z A = B
13 11 12 imbi12d z = B x J A x z x A = z x J A x B x A = B
14 8 13 rspc2va A X B X y X z X x J y x z x y = z x J A x B x A = B
15 14 ancoms y X z X x J y x z x y = z A X B X x J A x B x A = B
16 3 15 sylan J Kol2 A X B X x J A x B x A = B