Metamath Proof Explorer


Theorem t1connperf

Description: A connected T_1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis t1connperf.1 X = J
Assertion t1connperf J Fre J Conn ¬ X 1 𝑜 J Perf

Proof

Step Hyp Ref Expression
1 t1connperf.1 X = J
2 simplr J Fre J Conn x X x J J Conn
3 simprr J Fre J Conn x X x J x J
4 vex x V
5 4 snnz x
6 5 a1i J Fre J Conn x X x J x
7 1 t1sncld J Fre x X x Clsd J
8 7 ad2ant2r J Fre J Conn x X x J x Clsd J
9 1 2 3 6 8 connclo J Fre J Conn x X x J x = X
10 4 ensn1 x 1 𝑜
11 9 10 eqbrtrrdi J Fre J Conn x X x J X 1 𝑜
12 11 rexlimdvaa J Fre J Conn x X x J X 1 𝑜
13 12 con3d J Fre J Conn ¬ X 1 𝑜 ¬ x X x J
14 ralnex x X ¬ x J ¬ x X x J
15 13 14 syl6ibr J Fre J Conn ¬ X 1 𝑜 x X ¬ x J
16 t1top J Fre J Top
17 16 adantr J Fre J Conn J Top
18 1 isperf3 J Perf J Top x X ¬ x J
19 18 baib J Top J Perf x X ¬ x J
20 17 19 syl J Fre J Conn J Perf x X ¬ x J
21 15 20 sylibrd J Fre J Conn ¬ X 1 𝑜 J Perf
22 21 3impia J Fre J Conn ¬ X 1 𝑜 J Perf