Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
t1ficld
Next ⟩
hausnei
Metamath Proof Explorer
Ascii
Unicode
Theorem
t1ficld
Description:
In a T_1 space, finite sets are closed.
(Contributed by
Mario Carneiro
, 25-Dec-2016)
Ref
Expression
Hypothesis
ist0.1
⊢
X
=
⋃
J
Assertion
t1ficld
⊢
J
∈
Fre
∧
A
⊆
X
∧
A
∈
Fin
→
A
∈
Clsd
⁡
J
Proof
Step
Hyp
Ref
Expression
1
ist0.1
⊢
X
=
⋃
J
2
iunid
⊢
⋃
x
∈
A
x
=
A
3
1
ist1
⊢
J
∈
Fre
↔
J
∈
Top
∧
∀
x
∈
X
x
∈
Clsd
⁡
J
4
3
simplbi
⊢
J
∈
Fre
→
J
∈
Top
5
4
3ad2ant1
⊢
J
∈
Fre
∧
A
⊆
X
∧
A
∈
Fin
→
J
∈
Top
6
simp3
⊢
J
∈
Fre
∧
A
⊆
X
∧
A
∈
Fin
→
A
∈
Fin
7
3
simprbi
⊢
J
∈
Fre
→
∀
x
∈
X
x
∈
Clsd
⁡
J
8
ssralv
⊢
A
⊆
X
→
∀
x
∈
X
x
∈
Clsd
⁡
J
→
∀
x
∈
A
x
∈
Clsd
⁡
J
9
7
8
mpan9
⊢
J
∈
Fre
∧
A
⊆
X
→
∀
x
∈
A
x
∈
Clsd
⁡
J
10
9
3adant3
⊢
J
∈
Fre
∧
A
⊆
X
∧
A
∈
Fin
→
∀
x
∈
A
x
∈
Clsd
⁡
J
11
1
iuncld
⊢
J
∈
Top
∧
A
∈
Fin
∧
∀
x
∈
A
x
∈
Clsd
⁡
J
→
⋃
x
∈
A
x
∈
Clsd
⁡
J
12
5
6
10
11
syl3anc
⊢
J
∈
Fre
∧
A
⊆
X
∧
A
∈
Fin
→
⋃
x
∈
A
x
∈
Clsd
⁡
J
13
2
12
eqeltrrid
⊢
J
∈
Fre
∧
A
⊆
X
∧
A
∈
Fin
→
A
∈
Clsd
⁡
J