Metamath Proof Explorer


Theorem t1ficld

Description: In a T_1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis ist0.1 X = J
Assertion t1ficld J Fre A X A Fin A Clsd J

Proof

Step Hyp Ref Expression
1 ist0.1 X = J
2 iunid x A x = A
3 1 ist1 J Fre J Top x X x Clsd J
4 3 simplbi J Fre J Top
5 4 3ad2ant1 J Fre A X A Fin J Top
6 simp3 J Fre A X A Fin A Fin
7 3 simprbi J Fre x X x Clsd J
8 ssralv A X x X x Clsd J x A x Clsd J
9 7 8 mpan9 J Fre A X x A x Clsd J
10 9 3adant3 J Fre A X A Fin x A x Clsd J
11 1 iuncld J Top A Fin x A x Clsd J x A x Clsd J
12 5 6 10 11 syl3anc J Fre A X A Fin x A x Clsd J
13 2 12 eqeltrrid J Fre A X A Fin A Clsd J